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Abstract 

Optimization of coal pipe design is necessary to address the increasing demands of high 

performance and reduced emissions for pulverized coal-fired power plants. The design of 

coal piping is a complex and time-consuming engineering task that involves meeting of 

several design objectives and constraints. The distribution of coal particles in a pneumatic 

pipeline can be highly inhomogeneous, depending upon the pipeline geometry, phase 

loading, conveying air velocity and properties of the solid material including particle size, 

moisture content. A particularly difficult type of inhomogeneous distribution is the roping 

flow regime, in which most of the moving particles are concentrated into a small portion of 

the cross sectional area of the pipe which is mainly caused by bends in the pipe. Current coal 

piping design technology relies on empirical model and does not consider particle 

distribution characteristics in the pipe. In this thesis, a design tool which couples a validated 

detailed pipe model and an interactive optimization algorithm is developed. This new design 

tool uses evolutionary algorithms (EAs) as the optimization algorithm, and computational 

fluid dynamics (CFD) as the evaluation mechanism. The process uses an iterative approach 

that allows design to be evaluated using CFD analysis automatically to optimize several 

criteria. The proposed design change is then re-meshed and displayed. Three fundamentally 

different techniques from traditional optimization methods were considered in order to 

reduce computation time. Firstly, the tool has been implemented in a virtual engineering 

environment using VE-Suite. Secondly, the system is integrated with a general interface to 

allow users to set up the design procedure and interact or guide the searching path as the 

design evolves. Thirdly, a fast calculation approach is used to reduce the time for single CFD 
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case. The proposed interactive design tool is analyzed and enhanced so that it is usable by the 

general engineering community. A real coal pipe application was carried out using this 

design tool. The main objective is to distribute coal flow to its two branches as uniform as 

possible. The results of this work suggested that the optimum coal pipe can be found 

relatively fast even when using high-fidelity CFD solver as the analysis method, and the 

optimum pipe can greatly reduce the coal flow unbalance. This indicates that the tool 

presented in this thesis can be used as a new and efficient design environment for coal pipe. 
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Chapter 1 Introduction 

1.1 Problem statement 

Conveying materials in a gas stream from their storage locations to the locations where they 

are needed is referred to as pneumatic conveying. It is characterized by ease of installation of 

the conveying pipes. The most suitable characterization of pneumatic conveying systems is 

based on the average particle concentration and transport velocity in the pipeline. There are 

two modes of conveying according to this definition [62]: dilute phase and dense phase 

conveying. In general, dilute phase pneumatic conveying systems employ large volumes of 

gas at high velocities and are most widely used in pneumatic conveying systems. The 

materials are carried in a gas stream as discrete particles by means of drag and lift forces 

acting on each individual particle. A dense phase flow, on the other hand, is one in which the 

particle motion is controlled by particle collisions. 

The present study focuses on dilute phase pneumatic conveying usually applied in a 

power plant for the transport of pulverized coal with particle sizes ranging from 10 /jm to 

200 //AM . The air-to-solids mass loading ratios are typically in the range of one to three and 

the average air velocity is between 15 m/s and 30 m/s. As a result, the coal particles in the 

distribution network are normally very dilute with a typical volumetric concentration in the 

order of 1% or less. 

In pulverized coal plant, raw coal is ground to fine powders in the milling system and 

conveyed by preheated air and fuel gases through the pipe network. Each mill supplies an 

entire elevation of nozzles. By distributing the fuel in this fashion, a balanced fire is 

maintained regardless of which mill is out of order. Usually, the mills are all located at the 
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same elevation, but are often located at different corners of the furnace. Therefore, the paths 

followed by the individual pipes which include the length of pipes and the number of bends 

used are very different from each other. These pipes typically have a diameter that ranges 

from 0.3 to 0.5 meters; they are composed of both horizontal and vertical pipes connected by 

different bends, with a single pipe supplying a single burner. The main mixture of gas and 

fuel is bifurcated in two main streams to different burners. A typical example of the 

complexity of such a coal pipe system for a pulverized coal-fired plant is illustrated in Figure 

Today, coal-fired power plants are under increasing pressure to improve combustion 

performance and reduce emissions in order to minimize operation cost and meet the 

requirements of environmental regulations. The combustion efficiency of the burner is 

dependent on an even distribution of air and coal to the coal nozzles. A poor distribution of 

pulverized coal to the burner nozzles can adversely affect combustion, leading to premature 

failure of burners, local slagging, high levels of CO, and high unbumed carbon in fly ash 

1.1. 

Figure 1.1 Arrangement of coal piping system of a coal-fired power plant 
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(loss of ignition). At the same time, unbalanced burners can make it necessary to operate 

with higher average O2 levels in the furnace, limiting the NOx reduction that can be achieved 

through combustion optimization. Therefore, the coal transport piping system should be 

designed such as to ensure uniform rate and continuous feed of the pulverized fuel to the 

individual burners. 

In a power plant, the paths of the individual coal pipes are complex with many bends, 

so uneven coal distribution is inevitable mainly because of the complex phenomena of "coal 

roping" (discussed in chapter 2). There are several options for balancing the coal flow from 

coal millers to individual burners. Devices known as the riffle type bifurcators (Figure 1.2) 

are commonly used to control the coal distribution of the pipe system. Schneider [9] has 

reported that without a coal rope in front of a distributor, the particle distribution in the inlet 

cross section of a distributor is uniform; the mass flow is divided relatively uniformly into 

both outlets. However, if coal roping occurs in front of the distributor, particle distribution is 

not uniform over the pipe cross-section and the coal will no longer be evenly divided 

between the two outlets. As a result, the fuel inputs to the burner are not balanced; 

combustion efficiency will be greatly decreased, and the emissions will increase. Figure 1.3 

shows an example of "roping" flow around a bifurcator. Coal roping also affects the accuracy 

of traditional coal sampling probes that rely on a homogeneous flow. The failure of these 

probes to obtain accurate measurements adds difficulty to the flow control system. Therefore, 

despite the use of matched outlet pipes and flow splitting devices, uneven distribution of 

pulverized coal inevitably occurs. 
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1 

Figure 1.2 "Riffle" type bifurcator [2] Figure 1.3 Example of "roping" flow 
around a bifurcator [68] 

A great deal of research effort has been directed towards establishing more 

sophisticated online continuous measurement so that the subsequent controlling the air/coal 

flow rate in each pipe can be more accurate. However, there is one fundamental question that 

the power industry has forgotten to ask. Will or does better pipe geometry help to solve or 

minimize this problem? Since the uneven distribution situation is primarily caused by the 

complex coal distribution network. The answer to this question is "yes". Then the next 

question is how to design such a network? 

Current technology for designing coal piping systems is based on empirical methods 

which mainly focus on balancing the air flow. Empirical methods have been adequate when 

dealing with the size of the pipe, but they frequently result in sub-optimal designs for coal 

distribution. Figure 1.4 shows the coal flow streamlines in a simple furnace with the uniform 

inlet condition at four corners. Figure 1.5 shows the coal flow streamline in a simple furnace 

with two real coal pipes connecting to its four corners. As shown, when adding the real 
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piping system to the simulation model, the unequal air distribution has a significant impact 

on the performance of the furnace. This indicates that an understanding of the cross-sectional 

distribution is essential to the coal transporting system design. Therefore, the traditional pipe 

design technique is not suitable for such a task. 

Due to the advances in computational fluid dynamics (CFD) and computer hardware, 

CFD is often used as a design tool for single phase thermal fluid systems. In contrast, CFD 

models of gas-solid flow are significantly less developed than single phase models. However, 

they can still provide a greater level of detailed and improved solutions compared to simple 

engineering relationships. For example, CFD simulation can provide useful information on 

coal flow non-uniformity in pipe cross-sections in a coal pipe network, thus allowing the 

impact of proposed piping changes to be studied. CFD simulation becomes especially useful 

when paired with numerical optimization methods. Thus, using high fidelity CFD simulation 

instead of experiments or simple empirical methods is a natural choice for the design and 

construction of efficient coal conveying systems. 

Figurel.4 Streamline in simple furnace 
with uniform inlet condition 

Figure 1.5 Streamline in simple furnace 
with real inlet condition 
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The basic numerical design cycle when combined with CFD simulation is no different 

from the ordinary design cycle: fluid flow properties like pressure distribution, temperature, 

velocity, and heat flux are calculated for a baseline geometric configuration. The outcome of 

the CFD simulation is used in defining an objective function to be minimized or maximized. 

The objective function must relate geometric shape changes to comparable improvements in 

fluid flow characteristics of the optimum design. An optimization routine is then employed to 

automate evaluation of system solutions and to generate new system design. The system 

optimization continues until the optimization converges and an optimal system is obtained. 

However, applying numerical optimization with high fidelity CFD analysis is still a 

formidable challenge because of the following difficulties: 

1) In fluid dynamics, the continuity equation, the Navier-Stokes equations, the energy 

equation, and the equation of state govern the flow behavior. Calculating the solution of 

this system of tightly coupled, nonlinear partial differential equations requires a large 

amount of computing power. Very often, because of the nonlinear coupled nature of the 

fundamental equations, the objective function landscapes are nonlinear with many local 

optima, plateaus, or ridges even in a simple case. 

2) The nature of optimization design is iterative. Product design is a decision making 

process involving a lot of interactions between the designer and the designed product. 

Designers may change the design variables, constraints, or even design requirements and 

expect to see optimized performance of the designed product in these conditions. It is not 

uncommon for one function evaluation using a CFD analysis, especially a three-

dimensional Navier-Stokes equation, to take weeks to finish. The long computing time 
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caused by the high fidelity models makes the aforementioned interactive design process 

very difficult. 

Thus, a research question is raised: how can design optimization using high fidelity models, 

such as CFD models, be accomplished as quickly as possible, without sacrificing the 

accuracy of the analysis results. 

The optimization design tool must include a geometry modification tool for the 

handling of three-dimensional designs, as well as mesh generation tools and a multiphase 

CFD solver. A user-centric interface is also needed. Currently, there is no known general 

searching method that is suitable for every kind of flow field, so the design tool must be 

made significantly generic to allow for a multitude of domain specific searching methods. As 

mentioned before, a serious concern of all applications in the area of coupling optimization 

design with CFD relates to the computational expense. In the case of a single phase shape 

optimization, it may take hours, days or even weeks to get the optimal solution using a 

complete CFD model. Generally, the CFD model for two-phase flow is much more complex 

than the single phase model. This is mainly due to the complex nature of the numerical 

models required to model two-phase flow. Most of the numerical models for two-phase flow 

require the calculation of the continuous flow field first. After this continuous flow field 

converges, the particle phase is injected into the flow field and the solution is iterated until 

the interaction between the two phases is resolved. Because of this process of quadratic 

iteration, the computational time required is significantly longer than the time required for a 

single phase flow calculation. For this reason, integrating a two-phase CFD solver, which is 

required for coal piping system design, into an optimization searching process becomes 
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extremely time-consuming. Thus, an urgent and obvious need of reducing computational cost 

exists for a new design system. 

1.2 Summary of the thesis 

Yilmaz [4] points out that the flow pattern of the gas-particle flow is very sensitive to the 

pipe geometry such as the number of bends, the orientation of the pipe, and the orifice 

opening. In other words, the pipeline design has significant influence on the coal particle 

distribution. This thesis emphasizes how to improve design and development of complex 

engineering systems by employing CFD simulation and numerical optimization techniques. 

A special interest is how to perform shape design of power plant coal transport piping to 

improve coal particle distribution by utilizing the improved understanding of coal roping and 

new interactive simulation and optimization techniques. The goal of the proposed research 

can be described as: 

1) Develop an understanding of the mechanisms by which coal roping arises; 

2) Build a new, interactive engineering tool for design and modification of the coal transport 

piping; 

3) Apply this understanding to the design of the coal transport system in an operational coal-

fired plant; 

A basic understanding of complex phenomena within coal piping system is discussed 

in Chapter 2. Chapter 3 focuses on the literature review of engineering design which includes 

shape optimization, evolutionary algorithms and interactive engineering design. A new 

concept called virtual engineering is also introduced in Chapter 3. 
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One of the first steps to use CFD modeling is to ensure that an acceptable 

computational model can be built. The process of building coal conveying pipelines includes 

choosing an analysis package, validating the results using known results, and extending the 

model to the case of interest. In Chapter 4, qualitative comparisons are made between the 

CFD simulation and the available data from literature. 

In this thesis CFD simulation and optimization algorithms are integrated together into 

the system design process within a virtual engineering environment. Thus, it provides 

engineers with tools and methods which support systems engineering and analysis. 

Considering the nature of optimization design discussed above, there are three ways to 

reduce the computational cost. 

1) Reducing the number of calls to the solver of high fidelity CFD models. This requires 

the optimization method to be computed efficiently so that better designs can be found 

with fewer calls to the CFD solver. Currently, this is the primary focus of increasing the 

optimization's performance amongst the design community and a substantial amount of 

research has already been carried out on methods for dealing with this issue. Although 

obviously very important, it is outside of the scope of this thesis. 

2) Speeding up the convergence rate when calculating the CFD model. As in any design 

process, the faster the CFD code the better, since the more design iterations that can be 

performed within a given time-scale the more likely the designer is to achieve the design 

target within real world time constraints. This method, which focuses on reducing the 

computational cost by speeding up the convergence rate of the CFD model, is commonly 

neglected by the design community. This is mainly because of the long history of 
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separation between the design community and the CFD community. In this thesis, a new 

method of a fast calculation algorithm is presented in Chapter 5. 

3) Introducing human experience into the optimization process to narrow the search 

space to a manageable size. On the whole, the basis of the design process is trial and 

error, and the success of the final design largely depends on the knowledge and intuition 

of the designer. In this thesis a product design system is developed to give designers the 

opportunity to guide the design and optimization process using known engineering rules 

and their experience. By placing the human interactions in the design procedure, high 

fidelity models like CFD will be able to display its ability to the fullest extent when it is 

coupled with numerical optimization methods. Chapter 6 and Chapter 7 describe this new 

interactive design tool. 

The application of this new interactive design system to the design of a coal pipe system is 

presented in Chapter 8. The computing time and results are documented, and the efficacy of 

this design tool is demonstrated by comparing it with the traditional design optimization 

process. Conclusions and directions for future work are discussed in Chapter 9. 
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Chapter 2 Literature Review Part I: Gas-solid Flow 

The pneumatic conveying of solid particles is an important method for the transport of bulk 

materials. Due to its many advantages such as simplicity and flexibility in operation, it has 

been widely used in diverse industries such as chemical processing, food processing, and also 

in transporting pulverized coal in thermal power plants. This wide application has led to 

extensive research on pneumatic conveying of solids. Pneumatic conveying may be classified 

into several regimes such as dilute phase conveying and dense phase conveying based on 

particle loading and transport velocity. The main concern of the present study is dilute phase 

conveying where the particles are fully dispersed in the flow, and no deposition occurs, 

particularly in the case of pneumatic conveying of pulverized fuel in coal-fired power plant. 

Theoretically, pneumatic transport takes place under gas-solid pipe flow conditions. 

Although dilute gas-solid pipe flows are modeled using the basic laws of fluid mechanics, a 

thorough understanding of multiphase flow has yet to be obtained. The reason for this is that 

gas-solid flows are extremely complex. As one of the major topics in multiphase flow 

science, researchers in particle technology and fluid dynamics are trying to present more 

accurate numerical models to describe this complex phenomenon. Essential for a reliable 

CFD model is the appropriate modeling of the relevant physical mechanisms affecting the 

particle motion, for example, turbulent transport of particles, wall interactions of particles, 

collisions between particles and agglomeration. However, in some cases the physical 

phenomena are too complicated to allow for a derivation of the model from basic principles 

of physics for realistic devices. Therefore, numerical two-phase computations may be 

performed on different levels of complexity related to the resolution of the interface between 



www.manaraa.com

12 

the phases and the turbulence modeling. On the other hand, engineers working on pneumatic 

systems need to answer the following questions: how will the system respond to a change in 

the process conditions? Will it change if the particle size, particle hardness, temperature, or 

in the case of two phase flow, the superficial fluid velocity change? For many dilute phase 

systems, it is also important to be able to predict the particle concentration in a turbulent 

flow. Due to the different focus between the micro scale and macro scale issues, the research 

on gas-solid flow and pneumatic conveying system are generally treated as two different 

topics. 

2.1 Behavior and Properties of Dilute Gas-solid Pipe Flow 

Gas-solid pipe flow takes place under turbulent pipe flow conditions. It is necessary to 

understand and be able to identify certain fluid and particle properties that control the 

mechanisms that influence the flow field. The primary control properties of the gas-solid pipe 

include: time scales, particle turbulence interaction, forces on particles, and wall-particle 

interaction. It is worth mentioning that there have been other surveys of gas-solid flow 

techniques in the literature. For example, review paper [70] focuses on explaining the 

mathematical and conceptual issues involved in dilute phase modeling. 

2.1.1 Time Scales and Particle Turbulence Interaction 

Consider an incompressible turbulent flow, where the flow and the particles are subject to 

some boundary and initial conditions. Generally speaking, the flow turbulence gives rise to 

the diffusion of particles, and the particles exert an opposite force on the flow, producing a 

modification in the flow known as "turbulence modulation". Turbulent flows contain eddies 
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of various sizes, each having different amounts of rotational kinetic energy. Also each eddy 

has an associated length and time scale, referred to as eddy characteristic size and lifetime of 

the eddy, respectively. In other words, eddy size is equivalent to the physical dimension of a 

particular rotating structure, and eddy lifetime is the time interval for which that structure 

maintains its original size before it completely dissipates or breaks down into small structures 

or eddies [70]. In a turbulent flow, the maximum eddy size possible is known as integral 

length scale; the smallest eddy size is called the Kolmogorov length scale (77); and the time 

associated with this eddy is known as Kolmogorov time scale (r). The expressions for 

Kolmogorov length scale and time scale are given by: 

7 = 

T = 
^1/2 

X6 V 
(2.2) 

where v is the turbulent kinematic viscosity, and e is the turbulent kinetic energy 

dissipation rate. 

The size of the particle with respect to the eddy is an important parameter in 

determining the outcome of the eddy-particle interaction. It is common to assume that if a 

small particle (Note: a particle is referred to as small if its diameter is smaller than the 

Kolmogorov scale) is trapped inside an eddy, it will see a uniform velocity field during its 

residence within that eddy. If the particle is dense (pp > pf ), the inertial force at the fluid-

particle interface will dampen the fluctuations in its velocity compared to the fluctuations 

observed for the surrounding fluid. This reduction is characterized by a time scale called the 

particle relaxation time. The particle relaxation time is defined as the rate of response of 
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particle acceleration to the relative velocity between the particle and the carrier fluid. The 

mathematical expression for this relaxation time is: 

(2'3) 

where p p , d p ,  and Rep are the particle density, diameter, and Reynolds number, respectively, 

is the fluid viscosity, and CDis the drag coefficient. The expression for particle Reynolds 

number which is widely accepted for dilute flows is given by: 

Pf Rep = • 
v

P-v f  
— (2.4) 

Vf 

Where V p  and V f a r e  the particles velocity and fluid velocity vectors, respectively. A 

frequently used correlation for the drag coefficient is the Schiller-Naumann model, which fits 

the data up to Rep =1000 reasonably well 

CD — 

f 24 X 

(l + 0.15Re°687 ), if Re„ < 103 (2.5) 

It is generally agreed that turbulent eddies, which have random velocities relative to 

the mean flow, carry along with them fluid properties and particulate contaminate. Particle 

inertia will cause the particles to respond sluggishly to fluid turbulence, with particles not 

following the higher frequencies of turbulent fluctuations. As the particle size and inertia 

increase, the particle motion becomes less coupled to that of the gas phase. 

Stoke number ( S t )  is defined as the ratio of the particle relaxation time r p  and a 

turbulent time scale. The Stokes number represents the effect of particle inertia in the 

interaction with the turbulence. The choice of the appropriate turbulent time scale has been a 
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matter of controversy in the past, but most literature agrees that the Kolmogorov time scale is 

a proper choice. One may summarize the particle's ability to follow the flow by listing the 

criteria associated with Stokes Number: 

• St »1 particle motion is governed by gas phase turbulence 

• St «1 particle motion is only slightly affected by gas phase turbulence, in a random way 

• St « 1 particle motion is affected by gas phase turbulence and its inertia at the same time 

It is worth mentioning that most of the numerical work on the particle-turbulence 

interaction has been on homogeneous isotropic turbulence. However, the structure and 

dynamics of near-wall turbulence is very different from homogeneous isotropic turbulence, 

resulting in a different behavior for both particles and turbulence. The interaction between 

the particles and the turbulence leads to a non-uniform particle concentration and the 

formation of particle clusters, which are quite different from the "preferential concentration 

of particles" found in homogeneous isotropic turbulence [11]. 

2.1.2 Forces on Particles 

Newton's Second Law of Motion can be used to describe the motion of particles which are 

immersed in a turbulent flow. This requires the consideration of all relevant forces acting on 

the particle. Considering spherical particles and neglecting heat and mass transfer 

phenomena, Fan [1] pointed out that these forces can be placed in four categories: (1) forces 

that act on a particle due to the motion of the particle such as Basset (i.e. resistant to 

acceleration), virtual mass (describing the force that is required to accelerate the fluid 

entrained by the particles); (2) forces that act on a particle due to the motion of the 

surrounding fluid; (3) forces that act on a particle irrespective of the fact that the particle is 
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immersed in fluid or not; and (4) forces that act on any object immersed in fluid irrespective 

of either particle or fluid motion. 

2.1.3 Wall-particle Interaction 

Since flows in pneumatic conveying systems belong to confined flows, particle-wall 

collisions become relevant. The momentum loss of a particle caused by an inelastic wall 

impact is associated with a re-acceleration of the particle after rebound. Hence, momentum is 

extracted from the fluid phase for this acceleration, causing an additional pressure loss. A 

first estimate of the impacts of particle-wall collisions may be based on the ratio of the 

particle response distance Ap to the dimension of the confinement, e.g. the diameter of the 

pipe D. The particle response distance can be estimated from the following equation: 

where w, is the terminal velocity of the particle. In gravitational settling, the particle quickly 

reaches a constant velocity which is the maximum velocity attainable under the 

circumstances. This maximum settling velocity is called terminal velocity, which is given as: 

where Ap is the projected area of the particle in the plane perpendicular to the flow direction, 

g is the gravity acceleration, and m is the particle mass. For the case Ap is larger than the 

dimension of the confinement D, the particles' motion is dominated by particle-wall collision 

since they are not able to respond to the carrier flow before they collide with the opposite 

wall. 

(2.6) 

(2.7) 
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2.1.4 Particle-particle Collision 

Particle-particle collision is another factor that is important in determining particle motion. It 

is common to consider that particle-particle collision can be safely ignored in dilute pipe 

flows. However, even in the case where average particle concentration in the cross section of 

the pipe is low enough that inter-particle collision frequency is negligible, as the gas-solid 

mixture exits the elbow, the coal particles are concentrated together in a small region of the 

pipe cross-sections. This high particle concentration region in a pipe cross-section is often 

referred to as the rope region (this will be discussed further in Section 2.3). Since particles of 

high velocities flow into this region space, complex inter-particle collisions occur very 

frequently. In other words, it is particle-particle and wall-particle interactions rather than 

interaction between fluid and particles that determines behavior of the solid-flow in such 

places. This leads to another important time scale, the particle-particle collision timerc, 

which can be defined as: 

d. 
= -

( y/2 
* (2.8) 

24 ag0 

where 72is the granular temperature and g0is a distribution function. xc represents the time 

experienced by a given particle between two consecutive binary collisions. 

A classification of particle-laden flows in terms of importance of particle-particle 

collisions may be based on the particle response time rp to the averaged time between 

T 
collisions rc. If — < 1, the time between successive inter-particle collisions is larger than 

Tc 

the particle response time, whereby the fluid dynamic transport of the particles is the 
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dominant transport effect. If — > 1, the time between particle-particle collisions is smaller 
Tc 

than the particle response time, the particles are not able to completely respond to the fluid 

between successive collisions. 

In this section, an overview of the particle response to turbulent eddies under simple 

conditions has been presented. Although the discussion was limited to basic concepts, several 

factors are important when predicting turbulent particle dispersion in pipe flows. Some other 

basic principles about particle motion in a confined pipe line such as wall-particle and 

particle-particle collision have been discussed extensively in the literature such as review 

[85]. 

2.2 Governing Equations for Gas-solid Flows 

Since in the dilute phase the flow carrier phase plays a major role in determining the flow 

pattern, understanding turbulence phenomena is necessary to develop an understanding of the 

particle dispersion. 

2.2.1 Governing Equations for the Carrier Phase 

In general, the carrier phase flows under the influence of external forces, e.g. pressure force, 

and is governed by the Navier-Stokes equation and conservation of mass equation in the 

Eulerian framework. In the cases of incompressible flow, low particle Reynolds number and 

dilute concentration, the carrier phase plays a major role in determining the dynamics of the 

system; the effect of the particles on the continuity equation can be neglected, and the 
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interaction between the particles and the carrier phase occurs through an exchange of 

momentum. The continuity and Navier-Stokes equations for the continuous phase become 

V-l/  = 0 (2.9) 

/?y + (V £/)•£/} = —"VP+ //y V2t/ + <F (2.10) 

Where U is the velocity of the fluid (continuous phase), P is the pressure, and <F is the force 

per unit of volume due to the particles. 

2.2.2 Governing Equations for the Particle Phase 

In addition to solving the transport equations for the carrier phase, the trajectories of particles 

must also be computed. As discussed before, the motion of the dispersed phase occurs due to 

forces generated by the moving fluid and acting through the interface such as fluid drag 

force. The particles can also be acted upon by other forces, e.g. gravity, thermophoresis, 

electrostatic (for charged particles); all these forces paired with Newton's second law govern 

the Lagrangian trajectory of motion of each particle in the fluid flow domain. 

For each particle we have 

m p - j r = F + F * + F p * + F *  p.") 

Where Up is the velocity and m p the mass of the particle. F is the force exerted by the fluid 

on the particle. And subscripts g, pg, and A denote force components arising from gravity, 

flow pressure gradient, and added mass effect, respectively. 

2.3 Numerical Models for Gas-Solid Flows 
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As discussed before, gas-solid flows involve many different phenomena such as turbulence-

particle interaction, particle-particle interaction, wall-particle interaction and the effect of 

existing force fields. The ideal numerical solutions of the above equations for a fluid-particle 

flow would provide a "fully resolved simulation" with the detailed flow around every 

particle. Thus given global initial and boundary conditions together with the boundary 

conditions imposed at the surface of each particle, in theory it is possible to obtain the motion 

of each particle by integrating the particle equations using the local velocity, temperature, 

and density of the carrier flow and accounting for all particle-particle collisions. However, 

this is impractical due to the limitations of computer resources available today. There are 

several reviews (e.g. [10] and [11]) on two-phase flow modeling in the literature. The 

following section only provides a broad overview of the numerical simulation of two phase 

turbulence flow and some of the available choices and results that follow from them. 

2.3.1 Carrier Phase Models 

Accurate prediction of particle transport is strongly dependent upon providing a realistic 

description of the time-dependent, three dimensional velocity field encountered along 

particle trajectories. To study the behavior of particles in a turbulent flow field numerically, 

one needs a proper representation of turbulence itself first. Therefore, the way to model 

governing equations for the carrier phase forms the starting point for various numerical 

approaches which are categorized as direct numerical simulation (DNS), large-eddy 

simulation (LES) and Reynolds average Navier-Stokes modeling. All these turbulence 

models are cases in an Eulerian reference frame. 
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Among these three approaches, the most sophisticated way to simulate turbulence is 

DNS. With DNS studies, the Navier-Stokes equations and continuity equations are capable of 

generating all the details of real turbulence fluctuations. Unlike other approaches, these 

complex equations are solved without approximation and are sufficient to cover the small 

dissipative structures. Because of this, DNS methods require a large number of grid points 

that are sufficiently fine so they can resolve all flow eddies down to the smallest scale. DNS 

also requires a large number of time steps to reach a statistically steady state [20]. However, 

turbulence flow consists of a range of scales that increases rapidly with Reynolds number. In 

order to capture all of the length scales DNS needs a computational mesh with spatial grids in 

order of o(Re9'4 ) and time steps in order ofo(Re3 4 ). This restricts DNS to low Reynolds 

numbers. Therefore in industrial applications, where Reynolds numbers are usually very 

high, DNS modeling of turbulence is not feasible due to real-world time constraints. 

The equations, used most commonly for carrier phase engineering problems, are 

based on Reynolds-averaged Navier-Stokes (RANS) equation with several modeling 

assumptions (i.e., Boussinesq's hypothesis). A primary shortcoming of RANS methods for 

the prediction of two-phase flows is related to deficiencies associated with the model used to 

predict properties of the Eulerian turbulence field. Deficiencies in the prediction of 

turbulence properties in RANS calculations adversely impact prediction of dispersed phase 

transport. One of the most popular turbulence models in use today is an eddy-viscosity model 

known as k-s model. The k-s model was solved simultaneously with the average Navier-

Stokes equations to obtain a prediction of the mean flow process. However, it is known in 

single-phase flow modeling that the Boussinesq approximation yields an unsatisfactory 

description for certain types of flows, such as flows over curved surfaces, three-dimensional 
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flows, flows with boundary layer separation and flows with secondary motions. When the 

mathematical and physical complexity increases, alternatives such as Reynolds stress models 

(RSMs) and Algebraic stress models (ASMs) are possible. 

The LES method is an approach which is not as severely restricted in the range of 

Reynolds numbers as DNS. The LES method involves both direct simulation and Reynolds-

averaging approaches. With the LES method, the large scale eddies, which control turbulent 

diffusion of momentum or heat, are computed directly and only small eddies are modeled. A 

significant advantage of LES over RANS methods is that it permits a much more accurate 

accounting of particle-turbulence interactions. However, with today's computer capacity, 

LES are feasible for turbulent flows in simple geometries and become computationally 

expensive in cases of inhomogeneous turbulent flow of practical interests. 

2.3.2 Particle Dispersion Models 

The particle dispersion models for dilute gas-solid flows can be divided into the "trajectory" 

approach and the "two-fluid" approach based on the type of reference frame used for 

formulation. The trajectory approach is referred to as the Lagrangian method since it treats 

the particles as discrete entities interacting with turbulent eddies in a Lagrangian coordinate 

frame. For two-fluid models, the reference frame is stationary, and the particles pass through 

fixed differential control volumes; thus, it is also known as the Eulerian model. The Eulerian 

approach treats the particulate phase as a continuum having conservation equations similar to 

those of a continuous gas phase. In general, the Lagrangian method is a more natural way to 

treat particles in dilute flows; hence, these models are very popular in applications such as 

spray and pulverized coal combustion systems. Eulerian models are popular when the 
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particle loading is high, as in the case of the fluidized-bed combustion systems. However, 

they can also be used in modeling dilute particle-laden flow. The comparative studies of the 

two modeling approaches have been summarized in [22]. Since the research in this work is 

limited to dilute flows, the following section focuses on discussion on Lagrangian models. 

The Lagrangian particle models can be further classified into two major trajectory 

models. In the first type, the particle trajectories are generated directly using a stochastic 

model (random walk model) for Lagrangian velocities. The models are based on Taylor's 

approach for fluid particle dispersions. In the second type of model, the particle trajectories 

of representative samples are obtained by solving the particle momentum equation through 

the Eulerian fluid velocity field. The main problem of this approach is determining how to 

estimate the instantaneous fluid velocity that appears in the particle momentum equation. 

Although theoretically possible to track each individual particle using the Lagrangian 

approach, it is not always practical to do so. Normally, particles are divided into 

representative samples, each having the same dimension and initial conditions. The 

trajections of these representative samples are then determined in order to reduce the total 

number of trajectory computations to a reasonable figure. However, the number of 

trajectories should be high enough to provide statistics that characterize the actual particle 

behavior. 

2.4 Conveying Characteristics of Pipeline Components 

Due to the complex nature of the gas-solid flows, most of the modeling techniques discussed 

above have been restricted to very simple cases. When information on pressure drop, solids 

concentration, or particle velocities is required for pipe design in practical situations with 
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large scale complex piping, the piping designer has no alternative but to utilize one of the 

empirical correlations available in the literature. Therefore, in the past the majority of 

research on the dilute phase pneumatic system has been focused on finding better empirical 

equations. There are numerous experimental and theoretical/numerical studies on finding 

empirical equations [89, 90, 91]. 

Most recently, with the help of improved gas-solid flow numerical models and the 

increase of computer power, many physical and numerical experimental studies of gas-solid 

flows [72-79] have been conducted. In general, this kind of research starts with a comparison 

between the prediction that uses a specific numerical model and actual experiments in order 

to validate the accuracy of the numerical model. Once it proves that the numerical model can 

yield reliable predictions, conclusions are made based on the numerical results. Usually, the 

conclusions involved either prove that the numerical model can yield better predictions than 

other models or some predictions on the conveying characterization of gas-solid flow in 

order to help engineers better understand the gas-solid flow phenomena. However, it is 

important to keep in mind that such conclusions have a limited value since particle dispersion 

models are limited by incomplete knowledge of the instantaneous turbulent flow field. 

Therefore, it is generally accepted that the most reliable method is to base the predictions on 

data obtained from conveying trials in an instrumented test plane. The tables from 

Summerfel's review paper [90] summarize the work done in the modeling of lean phase 

pneumatic conveying. Table 2.1 is for the more experiment oriented examinations, and Table 

2.2 is for those mainly concerned with modeling, numerical experiment oriented 

examinations. 
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Many factors influence the process of pneumatic conveying. The dominant ones used 

from recommendations in the literature for gas-solid flows in complete pipes are as follows 

[4]: 

• Gravitational settling in horizontal pipes; 

• Inertial behavior in pipe bends and branches; 

• Turbulent dispersion; 

• Transverse lift forces induced by particle rotation; 

• Lift forces due to shear flow; 

• The collision of the particles with the rough walls of the pipe; 

• Wall collision process for non-spherical particles; 

Table 2.1 Summary of experimental studies on gas-solid channel and pipe flows [90] 

Reference Flow config Dimension Gas velocity Type of Particle den Particle di Mass loading Instrumenta
uration |mZ$] particles sity [kg/m3] ameter [mm] (kg/kg) tion 

Matsumoto Horizontal /. — 6 m, 7 and 10 Polystyrene 1040 0.94 0.5 Visualisation 
and Saito channel H = 25 mm Glass 2500 0.5 and 0.95 
(1970) Copper 8700 0.51 

Lee and Durst Vertical pipe Z, se O = 41.6 5.7 Glass beads 2500 0.1. 0.2, 0.4, Up to 1.0 LDA 
(1982) mm and 0.8 mm 

Lourenco et aL Horizontal L — unknown 6-13 Glass beads 2400 0.25 and 0.5 Up to 3.0 LDA 
(1983) channel 60 * 30 mm" 

Tsuji et al. Horizontal L =• 3.56 m. 7-20 Polystyrene 1000 0.2 and 3.4 Up to 5.0 LDA 
(1985) pipe H — 30.5 mm 

Tsuji et al. Vertical pipe L =• 5.11 m, 8-20 Polystyrene iooo 0.243. 0.5, Up to 5.0 LDA 
(1984) H — 30.5 mm 1.42, and 18 

Sommcrfeld Vertical H = 25 mm 8.6 Glass beads 2500 0.45 and 0.11 Very low LDA 
(1992) channel 

Kulick et al. Downward L — 5.0 HL 10.5 Lycopo- 300 0.1 and 0.5 Up to 0.8 LDA 
(1994) channel H — AD mm diura 

Glass beads 
Copper 

2500 
8700 LDA 

Huber and Different pipe Different 10-30 Glass beads 2500 0.042 and Up to 2.0 PDA, Imaging 
Sommerfeld dements length D — 80 0.110 for concentra
(1994) mm tion 

Varaksin et al. Vertical pipe £ = 1.38 m. 5.2 and 6.4 Glass beads 2550 0.05 and 0.1 Up to 1.2 LDA 
(1998, 1999) D — 46 mm Aluminia 3930 0.05 

Sommerfckl Horizontal I  — 3.0 m, 5 15 Glass beads 2500 0.1 and 0.5 Very low Particle track
and Huber channel H - 30 mm Quartz 2400 0.2 ing (streak 
(1999) technique) 

Kuisin and Horizontal L — 6 m. 10-25 Glass beads 2500 0.06-1.0 Up to 2.0 PDA 
Sommerfckl channel H = 35 ram Quartz P1V 
(2002) 
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Table 2.2 Summary of numerical studies on gas-solid channel and pipe flows [90] 

Reference Numerical Flow configuration. Gas Type of particles Partick Lift forces Wall collision Inter-particle 
method dimensions velocity 

(m/s) 
density 
[kgfai*j 

collision 
model 

Oujes(1978) Predefined flow, 
particle tracking, 
no coupling 

Horizontal pipe 
(two-dimensional) 
£>= 12 mm 

20 Spherical parti
cles. 3 mm 

820 Slip rotation Inelastic, rota
tion. no rough
ness 

No collisions 

Tsuji and Predefined flow, Pipe bend (D = 27 10-20 Polystyrene 1.6 1000 Slip rotation Inelastic, rota No coHisons 
Morikawa particle tracking no and SO mm) and 2.7 mm tion. no rough
(1978) coupling ness 

Tsuji el al. Kukr/Lagrangc, Horizontal channel 7 and 15 Polystyrene 1.0 1000 Slip diear. Inelastic, rota No collisions 
(1987) two-way coupling, 

no turbulence 
(// - 25 mm) mm slip rotation tion. virtual 

wall 
Tanaka and Predefined flow, Vertical pipe, peri 16 Polystyrene 0.4 1040 Slip diear. Inelastic, non IX'ierminislic. 

Tsuji (1991) particle tracking, 
no coupling 

odic domain (D — 40  
mm) 

and 1.5 mm slip rotation sphericalparti-
des 

rotation 

Tsuji el al. liufer/La grange. Horizontal pipe 10 0.41-1.0 mm 1038 Slip diear. Inelastic, non- No collisions 
(1991) two-way coupling, 

no turbulence 
(D = 52 mm) slip rotation spherical parti

cles 
Ocsterié Predefined flow, Pipe bend (/> = 80 20 and Spherical parti- 2620 Slip diear. Inelastic Stochastic, 

(1991) particle tracking, 
no coupling 

mm) 40 dés, 0.05 and 0.1 
mm 

slip rotation uncorrected 
velocities 

Sommerfeki Kukr/Lagrange. Horizontal channel 10.7 and Glass beads 0.1 2500 Slip diear. Inelastic, rota Stochastic, 
and Zivkovic two-way coupling W = 26 mm) and 15 and 0.04 mm slip rotation tion. roughness uncorrected 
(1992) pipe (£> — 80 nun) velocities 

Oeiterié and F.ukrZLa grange. Horizontal pipe 25.5 Spherical parti 2620 Slip diear, Inelastic, Stochastic, 
Pet it jean no coupling (D = 30 mm) cles 0.1 mm slip rotation rotation uncorrelated 
(1993) velocities 

SommerfeW Eukr/La grange. Horizontal channel 20 Glass beads 2500 Slip diear, Inelastic, rota Stochastic, 
(1995) no coupling (H = 30 mm) 0.045 and 0.1 

mm 
slip rotation tion .wall 

roughness 
uncorrelated 
velocities 

Cao and Eukr/Eukr, two- Vertical pipe 10-20 Polystyrene 0.2 1040 Neglected Slip bciundaiy Collision al 
Ahmadi way coupling (D -  30.5 mm) and 0.5 mm condition stresses 
(1995) 

Tu and Eukr/Eukr. Channel bend 52 Spherical parti 2990 Neglected No dip, gener No collisions 
Fletcher no coupling cles, 0.05 mm alised Eukrian 
(1995) 

Lun and Liu Eukr/Lagrange Horizontal channel 7-15 Glass beads 0.25 2500 Slip diear. Inelastic, rota Deterministic 
(1997) two-way coupling (H - 25 and 30 mm) and 1.0 mm slip rotation tion 

Huber and Euler/Lapany: Horizontal pipe, pipe 24 and Glass beads 0.04 2500 Slip shear. Inelastic. Stochastic. 
Sommerfdd four-way coupling bend, vertical pipe 27 slip rotation rotation, wall uncorrelated 
(1998) [D = 80 and 150 mm) roughness velocities 

As mentioned in Chapter 1, flexibility of routing is a feature particular to pneumatic 

conveying systems. The majority of pipelines, however, probably have a major proportion of 

horizontal pipe, vertical up sections are common, bends are prominent, and some have 

vertical down sections. In some cases, the systems also include some inclined pipes. The 

performance characteristics of the various components contribute to the total pipeline system 

performance characteristic. For example, conveying characteristics for straight pipelines are 

very different from those for pipeline bends. If the proportion of straight sections and bends 

varies between two pipelines, the conveying characteristics for the total pipeline systems can 
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also be very different. To illustrate the influence of individual pipeline sections on the 

conveying performance for a total pipeline system, the discussion on different 

characterizations of components is presented in the following sections. 

2.4.1 Horizontal Pipes 

Wen and Simons studied the flow characteristics of glass beads and coal of various sizes 

through horizontal glass pipes and discussed the flow patterns on the basis of visual 

observation. In horizontal pneumatic transport of granular solids, the flow features are very 

complicated because of the action of gravitational forces perpendicular to the flow direction. 

The solids distribution over the cross section of the conveying pipe is substantially 

influenced by gravitational forces, gas-phase turbulence, collision between particles, and 

collision between particles and the wall when particles are transported in a horizontal tube by 

a turbulent gas stream. 

2.4.2 Vertical Pipes 

The most important aspect in designing a vertical pneumatic conveying system is the 

selection of the working velocity of the handling gas. Using a high gas velocity leads to 

unnecessary energy losses and increased erosion whereas a low velocity produces a choking 

hazard characterized by particles leaving the stream, followed by cessation of conveying and 

finally clogging in the pipes. From an economical point of view, the practical gas velocity 

should be slightly higher than the choking velocity. 

2.4.3 Inclined Pipes 
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Apart from horizontal and vertical pneumatic conveying systems, inclined pneumatic 

conveying lines are quite common in the industry and thus attract the attention of researchers. 

A particular interest has been displayed in the transportation of particulate solids along 

inclined pipelines in lieu of horizontal and vertical pipelines due to its potential advantages 

over vertical and horizontal configurations. When compared with the numerous studies 

conducted for vertical and horizontal pneumatic transport, fundamental studies of inclined 

transport are still very limited, mostly to experiments on dilute-phase suspended upflow. 

Currently, most of these investigations were focused on pressure drop information. Zenz [1] 

and others [2] pioneered work investigating the pressure gradient in inclined gas-solids 

upflow. For a given solids flux and gas velocity, they found that the pressure gradient 

increases with the inclination angle from the horizontal to the vertical and that it differs only 

slightly at high angles of inclination between 67.5 and 90 degrees. The experiments 

performed by Morikawa et al [128] showed that the pressure gradient along a pipeline with 

inclination angles of 30, 45, and 60 degrees is higher that that along a vertical one under the 

same operating parameters. In addition, the work of Klinzing et al [129] confirmed a steady 

growth in the pressure gradient with increase in the inclination angle at relatively low angles 

ranging from 0 to 45 degrees at constant solids flux and gas velocity. Ginestet [127] also 

reported that, especially in the dense-phase region, the pressure gradient at high inclinations, 

above 72 degrees is significantly and invariantly greater than that at an inclination angle of 

90 degrees for the same solids flux and gas velocity. All of these previous experimental 

studies indicate that a maximum pressure gradient exists that correspond to a high angle of 

inclination to the vertical. Ginestet attributed this phenomenon to the fact that, for angles 

greater than this angle, the reduction of the pressure gradient due to particle reflux along the 
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pipe wall with increasing inclination exceeds the increase in gravitational force. For angles of 

inclination below this angle, the reduction in gravitational force with decreasing inclination 

exceeds the potential increase in pressure gradient due to particle reflux along the wall. Levy 

[126] investigated the pressure drop in inclined pneumatic conveying systems by both 

experiments and numerical simulation. Hirota [83] experimentally studied the influence of 

mechanical properties of powders on pressure drops in inclined gas-solid flows. 

2.4.4 Bends 

Many two-phase flow phenomena can occur in a bend of the piping system. Assume that 

particles enter the tubing with uniform distribution. If this gas-solid mixture flows along a 

straight pipe, the solid phase may separate from the air because of the gravity. As the gas and 

particle mixture flows through an elbow, the momentum of the particles carries them to the 

outer radius of the elbow and this volume with high particle density tends to stay together. As 

the mixtures exits the elbow, the particles are concentrated together in a small region of the 

pipe cross-sections. This high particle concentration region in a pipe cross-section is often 

referred to as a rope region. This rope region has a much higher particle concentration than 

the remainder of the pipe cross-section. In addition, the particles are decelerated in the elbow 

due to particle-wall and particle-particle interactions. Thus, an acceleration region is required 

in the pipe downstream of the elbow to reaccelerate the particles to the conveying gas 

velocity. Downstream from the elbow, the dust rope begins to disperse due to turbulent flow 

mixing and the accentuated double vortex flow structure created by the elbow [6]. 

Secondary flow 
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It is well known that a bend causes a secondary, transverse flow pattern in the tubing, 

consisting of two counter rotating vortices. This flow can be understood in the following 

manner. In a curved pipe flow, the pressure closer to the outer wall is higher, thus a net 

pressure force acts on fluid elements toward the inner wall. For fluid elements in the main 

flow, this pressure gradient is balanced by centrifugal force acting outward and proportional 

to the square of the velocity. In the boundary layer however, there is no such balance: the 

bulk pressure profile permeates the layer, but the velocity is low there. Thus the pressure 

difference in the boundary layer is a driving force for a flow in that layer from the outer wall 

to the inner wall. This is the flow driving the two counter rotating vortices, the so-called 

Dean vortices. The turbulent flow field through the bends is much more complicated, and up 

to now only few numerical simulations of this highly intricate flow have been carried out. 

The numerical predications of turbulent gas-particle flow through an elbow show the single-

phase solutions are modified by the momentum transfer between the gas phase and the 

particulate phase. The secondary flow patterns are also modified, resulting in four vortices in 

the pipe cross-section instead of the two large vortices present in single-phase flow. Figure 

2.1 compares these two different secondary flow patterns. The secondary flow patterns 

exhibit a flow current away from the outer wall towards the pipe center. This flow pattern 

provides the mechanism for removal of particles from within the rope to particle-free regions 

in the pipe cross-section [6]. 
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•i 

Figure 2.1 Secondary flow patterns (a) single-phase flow solution (b) gas-particle solution [6] 

Roping 

References to the formation of ropes date back to the late 1950's. Due to the extreme 

difficulty of the rope problem, numerical studies of turbulent gas-solid flows through pipe 

bends are very rare. Previous research [5-8] has shown that rope characteristics depend on 

many parameters, such as centrifugal forces, secondary flows, conveying gas velocity, elbow 

radius of curvature-to-pipe diameter ratio, solids-to-gas mass flow rate ratio, pipe orientation, 

particle diameter and particle density and the roughness of pipe wall. Although a very large 

amount of work has been done in this field over the past 50 years, because of the complexity 

of the phenomenon, most of the experimental and numerical research is still focused on the 

fundamental models such as vertical-to-horizontal pipe with 90° elbow, or the horizontal-to-

vertical pipe found today. A full understanding of the physics even in a simple pipe has not 

yet been achieved. Among the available research, an important study on gas and particle flow 

through bends is that of Huber and Sommerfeld [10]. They studied the cross-sectional 

distribution of fine powders in dilute phase pneumatic conveying through different pipe 

elements. They recommended the rope to be viewed as a third "phase", wherein the particle 
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velocity is considerably lower than the conveying gas velocity. The rope disintegrated after 

about one meter in a vertical pipe section behind the bend. Yilmaz [6] combined 

experimental and numerical results to describe the mechanisms involved in rope formation 

and dispersion in vertical pneumatic conveying line following horizontal-to-vertical bends. 

They observed that both turbulence and secondary flows disperse the particle ropes. For 

vertical-to-horizontal bends, McCluskey et al [124] showed that the particles in the rope at 

the bend exit have a velocity one third of that of the average gas velocity. They observed the 

formation of particle deposits near the elbow exit and concluded the deposit was created as 

the rope, traveling along the bottom of the pipe, was slowed by frictional forces to a velocity 

of zero. Levy and Mason [40] observed that the maximum concentration occurs just 

downstream of a bend for small particles and further downstream for larger particles after the 

elbow. Also the flow became fully developed sooner for larger particles. Because real 

particulate phases have a particle size distribution, segregation of particles in the pipe 

downstream of a bend is expected. 
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Chapter 3 Literature Review Part II: Optimum Engineering 
Design and Virtual Engineering Technology 

This research addresses several areas, including gas-solid flow, optimum engineering design, 

and virtual engineering. Two-phase flow of coal within a typical coal transport system in a 

power plant is discussed in Chapter 2. In this chapter, an overview of optimum engineering 

design and virtual engineering is provided. 

3.1 Optimum Engineering Design 

Engineering design is a special form of problem solving where a set of objectives has to be 

optimized while satisfying some constraints. When the design process is specifically applied 

to find optimal shapes, it is called shape design. Shape design is one of the most common 

design problems for fluid machinery such as thermal process equipments and aircrafts where 

fluid flow plays an essential role. The work presented in this thesis concerns shape 

optimization coal transport piping. 

3.1.1 Design Procedure 

It is worth noting that methods for shape design can be categorized into two groups: direct 

and inverse optimization methods. The distinction between the two is in how the design 

problem is formulated. In fluid mechanics, the inverse method deals with pressure or 

velocity distributions rather than the geometry. The task is to find the shape or geometry that 

will give rise to the desired pressure or velocity distribution. In some cases, the inverse 

method can be highly efficient compared to the direct method, but it has two drawbacks. 
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First, the distribution imposed on the formulation may not be physically realizable, so a 

solution may be impossible. Second, even if the distribution imposed is physically realizable, 

it may not be an optimal distribution [36]. 

If the design problem is posed as a minimization problem of an objective function 

subject to constraints on geometry or flow conditions, the direct optimization method is 

formed. The direct optimization method becomes time-consuming as a result of a number of 

numerical simulations needed to design profiles. However, with the development of 

computational speed and computer memory, the direct method is becoming a more promising 

optimization method, especially for multiobjective problems. 

3.1.2 Formulation of Direct Optimization Model 

It has been shown that design optimization problems from different fields of engineering can 

be formulated into the form of a standard model. The objectives and constraints have to be 

formulated as a function of the design evaluation and optimization can then be formulated as 

the classical mathematical problem of finding the extreme values of functions. Therefore, 

optimization techniques are quite general and the concepts and methods are applicable to 

many fields. The standard design optimization model is defined as follows: 

Find n-vector 

* - (  (3.1) 

to minimize the function 

/(*")= min/(: 
» • • • >  (3.2) 

Subject to the p equality constraints 
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h j ( x ) = h j ( x l , x 2 , . . . , x „ ) = 0 ;  y =1 t o p  (3.3) 

And the m inequality constraints 

g / ( ^ ) =  g t f a , * 2 > • • • > x J ^ O ;  i  =  \  t o r n  (3.4) 

Where p is the total number of equality constraints and m is the total number of inequality 

constraints. 

Using this model, the general procedure of the shape design consists of four 

components: 

Design variables 

An important step in the formulation of any optimum design problem is for the 

designer to explicitly identify an appropriate set of design variables. There are a lot of 

parameters that can be defined as design variables according to different design 

requirements. For shape design, the most interesting class of design variables is the 

geometrical one which can be used to define particular product shapes. 

Objectives and constraints 

Basically, objectives describe what one hopes to achieve through the optimization. As 

in all optimization problems the formulations of the objective function is crucial to 

the outcome of the optimization. Therefore, the objective function has to reflect all 

relevant system characteristics. Constraints determine whether the design is feasible 

or not. 

Simulation 

System simulation is employed in order to predict the performance of the system. 

Therefore, the system optimization is based on the simulation results. 
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Optimization algorithm 

A particular optimization algorithm is employed in order to find the minimum or 

maximum of the objective function. 

3.1.3 Traditional Engineering Design 

Figure 3.1 shows a flow chart for a traditional engineering design process. Traditional 

engineering design processes begin with formulating design requirements such as low initial 

cost, long life, and good performance. Then an initial design is evaluated. This can involve 

building a prototype and developing a model. When the design is found to be deficient in a 

requirement, it is changed. The design search process is typically a trial-and-error one that 

relies heavily on previous experience. The new design is repeatedly subjected to the test 

phase. The process iterates until the requirements are either met or changed to fit the 

performance. Often, the process is extremely time-consuming. In the past, people would 

solve simple problems (with a few design values) by making intelligent guesses about the 

values of the parameters and using trial-and-error. In many cases, this would yield an 

acceptable but not optimum result. Furthermore, manual design often limits the scope of the 

search process to what the human expert is trained to consider as a good solution. 

In the fluid machinery field, although experiments still play a crucial role in 

verification of fluid flow models and in validation of final products, ideally the search for a 

good design can be based on CFD models. CFD is a practical tool which can be used to 

predict the performance of fluid machinery components or to propose modifications to the 

original design in rehabilitation or upgrading projects. In general, traditional design using 

CFD can be classified into two categories: design-by-analysis and design-by-sensitivity 
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[121]. Design-by-analysis is a sequential process; the designer makes changes to the 

geometry and then runs CFD models to predict the flow field. After this step, the designer 

will depend on his or her knowledge and experience to decide if the test case is good. For 

most real applications in the industry, design-by-analysis is the only choice. In the design-by-

sensitivity approach, the CFD is used to produce a sensitivity matrix which gives the 

influence that a change in geometry will have on either the flow field or the design objective 

function. This approach requires more expertise from designers in order to make optimal 

choices for the design matrix. This can be a parallel process since it can be done concurrently 

on a pool of computers. 

Yes 

No 

Stop 

Estimate initial design 

Is design satisfactory? 

Analyze the system 

Collect data to 
describe the system 

Check performance 
criteria 

Change design based on 
experience/heuristics 

Figure 3.1 Traditional engineering design process [120] 
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3.1.4 Numerical Engineering Design 

During the last two decades, numerical optimization algorithms have been actively studied 

and have become increasingly more important. The objective of any numerical optimization 

technique is an automation of the conventional design process so that the best design, in 

terms of a presupposed criterion, is obtained [19]. Figure 3.2 shows a standard numerical 

design process. This numerical design process differs from the traditional process in that the 

iteration loop is computerized. An optimizing algorithm, which serves as the design modifier, 

is coupled with an appropriate engineering analysis code. The analysis code performs the test 

phase in the iteration loop. When used in the numerical optimization systems, the CFD code 

provides a series of function evaluations that are used by the optimizer to search for the 

optimum value of the given objectives' functions. Very often, the significant computational 

cost associated with CFD modeling makes numerical optimization of these systems too 

lengthy and computationally expensive. As a consequence, numerical optimization systems 

are routinely performed using lower fidelity models. Today, CFD is primarily used to 

provide insight into a limited number of specific design issues rather than as a design and 

optimization tool. One of the goals in this work is to use CFD as an analysis component for a 

design and optimization tool. 

3.2 Optimization Algorithm 

One of the most important issues in the shape optimization is how to search for an optimal 

solution to the design problem. With the development of powerful computers and modern 

computational techniques, numerical optimization algorithms are more predominant in many 

areas such as air foil design. 
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3.2.1 Classification 

In general, the numerical optimization algorithms could be divided into 

derivative/deterministic methods and stochastic methods. Deterministic algorithms follow a 

fixed search pattern, while stochastic algorithm involves some random processes in 

generating new designs. 

Yes 

No 

Stop 

Analyze the system 

Check the constraints 

Estimate initial design 

Collect data to 
describe the system 

Change design using an 
optimization method 

Does the design 
satisfy convergence 

criteria? 

Identify: 
Design variables 
Cost function to be minimized 
Constraints that must be satisfied 

Figure 3.2 Optimum design process [120] 
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Gradient-based methods and sensitivity analysis are two of the most well-known 

deterministic methods. The gradient-based method is very efficient in finding the local 

minima of continuously differentiable problems with simple fitness landscapes at a 

reasonable cost. The main drawback of this method is that the optimum obtained may not be 

a global one. In addition, if the optimization involves a large number of design variables, it 

can be very difficult to obtain the descent direction and the step size needed to carry out the 

optimization process. The object of sensitivity analysis, in principle, is to analyze the 

behavior of the system response by calculating the sensitivities around a chosen parameter or 

state variable. For many optimization problems, once these sensitivities are available, the 

computational cost can be reduced significantly. 

On the other hand, stochastic optimization methods that are robust in searching for 

the global optimum are more suitable for general engineering design problems. EAs and 

other closely related evolutionary strategies are one class of non-gradient methods that have 

recently grown in popularity. When EAs are applied to optimize design problems, the major 

advantage over other optimization procedures is mainly related to the robustness of the 

procedure. EAs do not require any derivatives of the objective function in order to calculate 

the optimum and can use discrete rather than the continuous design inputs required by 

traditional optimization schemes. They are also known as black box methods and easy to 

implement. Another advantage is that they are more likely to find the global optima as 

compared to the conventional methods that search from a point to another point such as the 

gradient-based methods. During the optimization, EAs explore the entire feasible space and 

search from different design points in one run; thus, the probability of finding a local peak 
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instead of the global is reduced significantly. EAs are also an attractive method for multi-

objective design applications being offering "pareto optimal sets" instead of a limited single 

design point traditionally provided by other methods. EAs have become a widely accepted 

technique in shape optimization to better search the design space. Because of this, EAs are 

becoming more predominant in shape optimization and engineering design. EAs also have 

some disadvantages. They are computationally demanding, since many candidate solutions 

have to be evaluated in the optimization process. In addition, EAs typically have more 

algorithmic parameters to tune compared with simpler techniques. These parameters are 

unfortunately problem dependent and few quantified rules are available to set them. 

3.2.2 Evolutionary Algorithms: A Brief Introduction 

In 1975, John Holland [37] proposed an optimization technique that exploited an analogy 

between function optimization and the biological process of evolutionary adaptation. This 

technique has gained popularity as a robust optimization tool. Regarding the implementation 

of EAs, there is a great variety both in population structures and evolutionary operators. 

However, all EAs have an initialization phase followed by an iteration phase that evolves the 

initial population to a better set of solutions to the problem. Roughly speaking, evolutionary 

algorithms attempt to find the optimal solution of the problem at hand by manipulating a 

population of candidate solutions [28]. 
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Initialize Select 
Population individuals for 

crossover 
(based on 

fitness 
function) 

Crossover Mutation Insert new 
offspring 

into 
Donuiation 

Are 
stopping 
criteria 

satisfied? 

Finish 

Figure 3.3 Basic flowchart of EAs [28] 

A general flowchart for all EAs is shown in Figure 3.3. To implement an 

evolutionary algorithm, a number of candidate solutions are created throughout the search 

space. Every individual candidate consists of a genome and a fitness. The genome consists of 

a number of genes that altogether encode a solution to the optimization problem. The fitness 

represents the performance of the candidate solution encoded in the individual's genome, and 

it is usually measured using a so-called fitness function. The reproduction is achieved using 

crossover and mutation operators. The children (new candidate solutions) are inserted into 

the population and the procedure starts over again until the population has converged or the 

maximum number of generations has been reached. During the run, the fitness of the best 

individual improves over time and typically tends to stagnate towards the end of the run (see 

Figure 3.4). 
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Figure 3.4 Graduai fitness improvement during the run [51] 

There are four main operators that define how designs evolve within a population. 

1) the method of selection of the parents from the population, 

2) the crossover operators, 

3) the mutation operators, and 

4) the basis for placing the evolved children into the population. 

3.3 Previous Work on CFD-based Shape Optimization 

In many cases, the design and engineering of thermal fluid systems requires high-fidelity 

models (e.g., CFD) to understand the details of the fluid flow, heat transfer, or other 

phenomena of interest. Because of this, CFD has the potential to become an integral part of 

engineering design and analysis due to its ability to predict the performance of new designs 

or processes before they are ever manufactured or implemented. As discussed above, the 

selection of the optimization algorithm is highly problem dependent. For fluid machinery, 
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the continuity equation, the Navier-Stokes equations, the energy equation, and the needed 

equation of state govern the flow behavior. Finding the solution of such a system with tightly 

coupled nonlinear partial differential equations requires large amounts of computing power. 

Very often, because of the nonlinear coupled nature of the fundamental equations, the 

objective function landscapes are nonlinear with many local optima, plateaus or ridges even 

in simple problems. Thus, the sensitivity information cannot be easily extracted from CFD 

code. The main reason for this is because the sensitivity equations are obtained by 

differentiating the non-linear governing equations with respect to the design variables. As a 

result, the computational effort is significantly increased in evaluating the responses of the 

flow to geometry perturbations. This creates a significant obstacle for using gradient-based 

methods when design optimization is combined with CFD. Also, when using a commercial 

CFD package, the gradient information is not available directly. Options such as adjoint 

gradient calculation and the automatic differentiation method must be eliminated because of 

the unavailability of the source code of the CFD solver. In such cases, gradient-free 

optimization methods such as EAs are the preferred optimization algorithm. 

There have been a number of studies of utilizing EAs in conjunction with high 

fidelity CFD models to optimize a wide variety of shape optimization projects. These 

projects have included airfoils [39, 40, 41, 55], heat exchangers [42, 43], two-dimensional 

blade profiles [44], missile nozzle inlets for high-speed flow [46, 47], three-dimensional 

shape optimization [48], sailing yacht fin keel [49], and stoves [50, 51]. Graph based 

evolutionary algorithms (GBEAs), which are a form of EAs, have also been used to optimize 

the rate or spread of information through the evolving population relative to the complexity 
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of the search [51]. This provides a means to preserve population diversity and speed up the 

optimization process. 

Increasing EAs performance has been studied extensively and several methods have 

been suggested to overcome the computational cost of using high fidelity models to perform 

the fitness evaluation. One of the most common approaches has been to first use a low detail 

representation of the thermal-fluids design problem to evolve the designs and then to utilize a 

high detail model to validate and refine the solution [47]. Other attempts to reduce 

computation time are reported in the following section. 

Shigeru Obayashi [21] has applied the single-objective EA and multiple-objective EA 

to optimization problems of supersonic wings. The aerodynamic optimization problem 

searched for an optimal supersonic wing shape using the Euler equations. The 

multidisciplinary optimization problem looked for an optimal supersonic wing platform 

shape using linearized aerodynamics and wing weight algebraic estimation. To couple the 

evolutionary approach with CFD code, the unstructured grid approach was employed. The 

unstructured grid generation was performed for each design candidate by using the dynamic 

mesh technique; the flow calculation was also accelerated by using the space marching 

technique. The designed wing was not practical since the design space is very limited, but the 

result indicates that such evolutionary computations could be used in airfoil design. 

Jones [55] used the Message Passing Interface (MPI) to implement a manager/worker 

parallel evolutionary algorithm into the design of helicopter rotor airfoils. In this case, the 

GA operations included an advanced n-branch tournament selection, uniform crossover, and 

low probability mutation. The communication between manager and workers was via a 

dynamic load-balancing model. This model allowed the workers that had completed their 
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evaluation to begin new tasks without waiting for slower workers to finish. Finally, the 

generated Pareto-optimal airfoil set was compared to the performance of a typical rotorcraft 

airfoil under identical flight conditions. The results showed that these designs appeared to be 

promising, non-traditional shapes for improved aerodynamic and aeroacoustic performance. 

Makinen et al. [39] used a modified nondominated sorting genetic algorithm (NSGA) 

for two-dimensional airfoil design. The flow was modeled by thin-layer Navier-Stokes 

equations and time-harmonic Maxwell equations, and the convergence was accelerated using 

a multigrid algorithm. In his modified NSGA, the diversity of the population was preserved 

using the so-called tournament slot sharing method. The probability for the individual i to 

enter a tournament was given by 

where the parameter n is the size of population, ShQ is the share function, and dij is the 

genotypic distance between the individual i and j. crshare is the maximum sharing distance 

for a tournament slot. 

Li and Satofuka [27] presented a new method for the multiobjective aerodynamic 

design of a compressor cascade. In their study, Bezier curves were used to represent the 

geometry of the cascade shape. A two-dimensional Navier-Stokes solver was used to 

Sh(d, )= 1  (  
share 

(3.5) 
0 

(3.6) 
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evaluate the aerodynamic performance of design candidates. The idea of the two-branch 

tournament selection method for a two-objective optimization problem, which was presented 

by Crossley [56], was adopted to develop the two-branch Boltzman selection. The two-

branch Boltzmann selection approach was organized so that designs compete on one of two 

objectives. One branch of the Boltzmann selection measures design on the first objective, and 

the second branch evaluated individuals on the second objective. This two-branch Boltzmann 

selection can select excellent individuals. The basic Boltzman selection is essentially a 

selection operator for controlling the selective pressure in the GA approach. The probability 

of individual selection in the Boltzman selection is obtained by 

where /, (x) is the fitness of the individual, ris the temperature, the numerator contains the 

Boltzmann weighting term, and the denominator is a normalization factor. The formulation 

of T is described by 

where T0 is the initial temperature, set to be 10 times the maximum fitness of the first 

generation. 

Other approaches suggest implementing a neural network (NN) and/or a response 

surface method (RSM) to fit curves through the design space [45, 52, 53, 54]. This enables 

an approximate answer to be obtained for a design rather than having to call a CFD solver for 

a computationally expensive fitness evaluation. The combination of NNs and RSMs in these 

(3.7) 

7 
T  = max l - e  ̂ > V s  (3.8) 

X 
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applications has been shown to significantly reduce the time for the optimization process. 

Three approaches have utilized neural networks. In the first, design of a sailing yacht, fin 

keel was optimized by combining a traditional EA with a recursive recall neural network 

[49]. In this technique, neural networks were used with a conjugate gradient optimization 

routine following the optimization with an EA. By using the information available from the 

EA process in a neural net to construct a global approximation of the fitness, the number of 

CFD calls by the conjugate gradient solver was minimized. In addition, the conjugate 

gradient solver reduced the number of calls to the EA by allowing the EA to establish the 

general location of the optima and then seek the answer more directly. In another approach, 

Fan [45] used a neural network to construct a model of the search space based on the 

potential flow around a turbine blade. This is similar to constructing a response surface. This 

model was then used in an EA to optimize the velocity profile on a turbine blade. In both of 

these cases, the neural network is used to predict the solution directly from the design inputs. 

Another approach utilizes an artificial neural network (ANN) with a feature weighted general 

regression neural network (GRNN) to develop a real-time estimate of the final fitness and 

error bounds for a thermal fluids system during each iteration of the CFD solver [50]. During 

each fitness evaluation, the CFD solver iteratively solves the fluid flow and heat transfer 

characteristics of the proposed design. Normally the stopping point for this process is based 

on the traditional convergence criteria for CFD analysis. By developing a real-time estimate 

of the fitness and error bounds at each iteration, the algorithm can determine when the fitness 

of the design is known with sufficient accuracy for the evolutionary process. This 

significantly reduces the number of iterations required. 
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3.4 Interactive/Steering Function in the Design Process 

Most current optimization tools do not support interaction between designers and the design 

problem. Currently, numerical design optimization typically takes place in batch mode. The 

stereotypical role of the designer in these systems is to specify the problem including 

predefined constraints and control parameters, and then initiate a computer search to find an 

optimal solution. Using the CFD-based evolutionary algorithm as an example, a typical 

scenario might be as follows: 

• The user provides EAs parameters sets (crossover rate, mutation rate, etc.) and object 

functions according to the specific problem at hand. 

• The searching algorithm is then executed, often taking hours if not days or weeks to 

finish; during the execution there is little if any interaction with the system. 

• Upon completion of the searching algorithm, the solutions are assessed, and any data 

output by the algorithm is graphed. 

• Using this information, parameters may be altered, or more significant changes may be 

made to the algorithm, and then the algorithm is run again, hopefully with improved 

performance and results. 

This kind of machine-based numerical optimization has significant utility within well-

defined routines and detailed design domains. However, in practical applications, it is the 

solution suggested by the optimizer but not the actual details of the design that are most 

interesting. Anderson [99] pointed out that in many contexts interaction is more important 

than efficiency since the optimization algorithm is working with an impoverished objective 

function and the ability to successfully implement the solution depends on how well people 

understand and trust it. Users must understand and trust the generated solutions to make 
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effective use of them. The real design process can also be quite complex; often the problem 

cannot be stated in a precise form for complete analysis, and there are uncertainties in the 

design data. In many instances, the formulations of the problem must be developed as part of 

the design process. Therefore, it is neither desirable nor useful to optimize an inexact 

problem from start to finish in a batch environment. Indeed, it would be a waste of time to 

find out at the end that wrong data was used or a constraint was inadvertently omitted. 

Obviously, a combination of batch processing and simple post-processing is inadequate in 

the real world. 

In recent years research related to interactive optimization has increased. More and 

more researchers agree that users are more likely to understand a solution that they helped to 

create than one that is simply presented to them. Research shows that including humans "in-

the-loop" during the design process can enhance optimization performance. Interactive 

evolutionary algorithms is an optimization approach where the EA optimizes target systems 

based on human evaluation. Simply speaking, this approach is an EA whose fitness function 

is a human user. Interactive evolutionary algorithms have been applied to several tasks in 

artistic, speech and image processing, hearing aid fitting, data mining, virtual reality and so 

on. However, most literature in this field focuses on extreme cases; for example, some 

interactive optimization algorithms require user guidance at every step. Without user 

instruction, such algorithms halt. Therefore, they are typically only considered in cases where 

it is hard or impossible to use numerical models to represent the problem such as works of 

art. Understandably, given the demands on user time imposed by algorithms of this kind, 

they are seldom used in the engineering design process. 
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Other researchers used computational steering technology to interactively control a 

computational process such as CFD simulation and optimization during execution. With 

computational steering, users are continuously provided with visual feedback about the state 

of their simulation and can change parameters on the fly. Therefore, designers can vary 

parameters to optimize their product. Computational steering was recognized as an important 

issue twenty years ago. There are several general computational steering environments that 

have been developed over the years such as VASE from the University of Illinois [130], 

SCIRun from the University of Uath [103], and CUMULVS from Oak Ridge National 

Laboratory [131]. Although the concept of computational steering is a good idea, the 

implementation of computational steering is very difficult in practice. It requires the user to 

have a high level of knowledge of the simulation, visualization, user interface, and data 

communication. Therefore, while these packages offer significant promise, they are generally 

time consuming to use and hard to adapt to meet actual project requirements. For example, to 

integrate an existing application into these systems, the application source code has to be 

manually annotated with program statements by the application developer. 

3.5 Virtual Engineering 

One of the reasons why human feedback is not integrated into the design optimization 

process is the difficulty of showing the designed product and its performance in an 

understandable and intuitive way. That is, designers cannot decide which design is superior 

by simply looking at the parameters. However, designers can observe the analysis result of a 

design and identify whether it is the result they wanted, given that the result is shown in a 

realistic and intuitive manner. By creating a realistic experience from a computed simulation 



www.manaraa.com

52 

and maintaining the visitor's focus within that experience, the full potential of human thought 

and skill can be brought to bear on the problem. This enables the user to focus entirely on 

the engineering problem, ensuring that complexities can be understood and that the full range 

of engineering solutions can be explored. 

Virtual engineering is an emerging technology that has recently grown in popularity 

and is defined as a technology that integrates geometric models and related engineering tools 

such as analysis and simulation, optimization and decision making tools, etc. within a 

computer generated environment that facilitates multidisciplinary collaborative product 

realization [110]. Figure 3.5 illustrates the basic functionality of a virtual engineering system. 

Obviously, each component in the figure represents a very broad research topic and involves 

many difficult questions. Several research groups have worked to couple engineering 

analysis and virtual environments, enabling the user to perform engineering tasks from the 

virtual environment [57, 58, 59, 60]. One of the earliest applications was Boilermaker [57]. 

Boilermaker coupled together a computational model of an industrial furnace with a virtual 

environment to enable the user to make changes to the inlet nozzle configuration and then see 

the resulting furnace performance on the fly. This enabled the engineer to explore various 

furnace configurations on the fly and consider a number of variables to create the optimum 

design for a particular furnace. Another example of coupling engineering analysis and virtual 

environments is DN-Edit [59]. DN-Edit allows NURBS-based (Non-Uniform Rational B-

Splines) surface geometry to be altered interactively. Virtual cursors allowed interaction with 

geometry surfaces, enabled surface points to be displaced, material to be added or removed 

and provided exact control of surface normals at specific points. The resulting surfaces are 

NURBS-based and can be exported to various CAD or analysis programs. The shaping of 
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three-dimensional geometry in a virtual environment creates an intuitive process that 

bypasses the obstacles and limitations of a two-dimensional human-computer interface. In 

addition to those mentioned above, applications coupling virtual environments and 

engineering have been developed for assembly [58], hose routing, and design of three-

dimensional mechanisms [59]. 

The common thread amongst all the current applications that couple virtual 

environments and engineering analysis is the need for rapid engineering analysis enabling 

interactive manipulation and interrogation of the engineering component or system. 

Generally, this rapid analysis is achieved through simplified analysis or low fidelity models. 

In many cases, the surrounding environment is shown as a three-dimensional graphic 

environment. A virtual engineering environment is one that provides a user-centered, first-

person perspective enabling the user to interact with the engineered system in a natural way 

and providing the user with a wide range of accessible tools. This requires an engineering 

model that includes the geometry, physics, and any quantitative or qualitative data from the 

real system. The user should be able to walk through the operating system and observe how 

it works and how it responds to changes in design, operation, or any other engineering 

modification. Interaction within the virtual environment should provide an easily understood 

interface, appropriate to the user's technical background and expertise, that enables the user 

to explore and discover unexpected but critical details about the behavior of the system. 

Similarly, engineering tools and software should fit naturally into the environment and allow 

the user to maintain her or his focus on the engineering problem at hand. A key aim of 

virtual engineering is to engage the human capacity for complex evaluation. The key 

components of this environment include: 
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• User centered virtual reality visualization techniques—when presented in a familiar and 

natural interface, complex three-dimensional data becomes more understandable and 

usable, enhancing the understanding of the user [61]. Coupled with an appropriate expert 

(e.g., a design engineer, a plant engineer, or a construction manager), virtual reality can 

reduce design time for better solutions. 

• Interactive analysis and engineering—today nearly all aspects of power plant simulation 

require extensive off-line setup, calculation, and iteration. The time required for each 

iteration can range from a day to several weeks. Tools for interactive collaborative 

engineering in which the engineer can establish a dynamic thinking process are needed to 

permit real-time exploration of "what-if ' questions essential to the engineering process. In 

nearly all circumstances, an engineering answer now has much greater value than an 

answer a day, a week, or a month from now. Because of this, although many excellent 

engineering analysis techniques have been developed, they are not routinely used as a 

fundamental part of engineering design, operations, control, and maintenance. This is 

because the time required to set up, compute, understand the result, and repeat the process 

until an adequate answer is obtained significantly exceeds the time available. This 

includes techniques such as CFD, finite elements analysis (FEA), and optimization of 

complex systems. Instead, these engineering tools are used to provide limited insight to 

the problem, to sharpen an answer, or to understand what went wrong after a bad design 

and how to improve the results next time. This is particularly true of CFD analysis. 

• Integration of real processes into the virtual environment—as noted earlier, engineering is 

more than analysis and design. A methodology for storage and rapid access to 
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engineering analyses, plant data, geometry, and all other qualitative and quantitative 

engineering data related to plant operation needs to be developed. 

• Engineering decision support tools—optimization, cost analysis, scheduling, and 

knowledge based tools need to be integrated into the engineering processes. 
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Figure 3.5 Framework of the virtual engineering system [110] 

As previously noted, evidences from existing literature show that virtual engineering 

can be a powerful tool that could greatly enhance productivity. This begs the question, why 

isn't it routinely used? Simply put, today the implementation of virtual engineering is 

extremely challenging. Each of the four components has to be considered when developing a 

virtual engineering application. In other words, the implementation of virtual engineering 

requires knowledge of the application and visualization including virtual reality technology, 

user interfaces, data communication and his/or own application. In addition, end-users (e.g. 

design engineers), are generally not programming experts. 
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Virtual engineering applications can be constructed from scratch, but as with any 

construction task, applications can be constructed more easily and efficiently by integrating 

an existing application; the existing application could be automated, or at least a higher lever 

user interface to assist in the annotation of the application can be provided. The general 

virtual engineering environments that contain software tools should be able to provide higher 

level functionality on aspects common to arbitrary virtual engineering applications. The 

existing research on virtual engineering discussed above shows that the construction of the 

virtual engineering application is an underdeveloped aspect; existing systems can only 

support specific applications. In addition, existing systems are not tailored to the specific 

requirements of an effective virtual engineering application. These deficiencies led to the 

development of VE-Suite for a general purpose virtual engineering environment that fills the 

gap in existing systems. The details of VE-Suite are discussed in Chapter 6. 
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Chapter 4 Computational Model and Preliminary Results 

As mentioned in Chapter 1, in order to achieve better coal pipe design, high fidelity solver is 

needed. CFD is attractive to the design community since it is more cost-effective than 

physical testing. Also, it is generally much better at predicting trends which is what design 

optimization requires. However, one must note that complex flow simulations are 

challenging and error-prone, and it takes significant engineering expertise to obtain valid 

solutions. In fact, the importance of good validation can not be overstated. Validation does 

not mean that the code has to give identical correct solutions on every possible geometry 

variation, but, the solver should behave consistently across a range of similar geometries and 

provide sufficiently accurate solutions to enable decision making. Therefore, to use CFD to 

design a coal transport system, one of the first steps is to ensure that an acceptable 

computational model can be built. The key steps in the process of building this model include 

choosing an analysis package, validating the results using known results, and extending the 

model to the case of interest. 

4.1 Choosing an Analysis Package 

There are several choices available for CFD analysis packages ranging from open source 

projects to proven commercial products. Open source CFD products have several advantages. 

They can provide a base platform to which an analyst can add special features that may be 

needed. Also, open source CFD products can often be tuned to provide faster answers than 

general purpose commercial CFD products. The disadvantage of open source products is that 

they usually lack commercial technical support and generally only support simple geometries 
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that can be modeled using structured grids. Because of this, the industry generally chooses to 

use commercial CFD products. For our sample case, coal roping has successfully been 

modeled using CFX™, and the company sponsoring this research uses Fluent™ as their 

corporate CFD analysis package. Based on this, Fluent™ was chosen as the CFD analysis 

package used in this research. 

Fluent™ is a comprehensive CFD analysis tool. It can be used to model turbulence, 

combustion, and multiphase applications. Models and meshes are created using the 

preprocessor Gambit™. Fluent™ also has post-processing capabilities for organizing and 

interpreting data and images. In the case of a dilute gas-solid flow behavior in complicated 

geometries, Fluent™ allows the user to simulate a discrete second phase in a Lagrangian 

frame of reference. It uses an iterative technique to account for the coupling between the 

motion of the gas and particle phase based on the particle-source-in-cell method of Crowe et 

al. [63]. First, the gas flow field is calculated assuming no particles are present. This flow 

field is used to calculate particle trajectories; after this, momentum source terms for each cell 

throughout the flow field are determined. The gas flow field is solved again, incorporating 

the new particle trajectories that constitute the effect of the gas phase on the particles. The 

new gas flow field is used to establish new particle trajectories that constitute the effect of the 

gas phase on the particles. After calculating new source terms and incorporating them into 

the gas flow field, this iteration is continued until convergence is obtained. 

4.2 Governing Equations and Turbulence Modeling 
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The conservation equation for mass and momentum are solved for the continuous phase of 

the flow in FLUENT™. For the gas phase, the continuity and momentum equations are given 

by 

aT
+J^=0 (<U) 

§;+it~+fig>+F> <4-2> 

Where ugi is the local gas-phase velocity in the ith direction in an inertial reference frame, 

p is the static pressure, Ty is the stress tensor, g,- is the gravitational acceleration, and is 

the interface force between gas and solid phases (per unit volume in the direction). The 

stress Ttj is given by 

Tv = 
9 m d u „ -  ̂  

Pz 
& I si 

v dxj dxi (4-3) 

Where ug is the gas-phase viscosity and the second term on the right side is the effect of 

volume dilation. 

For the fluid turbulence model, the renormalization group (RNG) k - e turbulence 

model was used. Use of the RNG k -s model can yield significant improvements over the 

standard k-emodel for recirculatory flows because of its better performance over the 

standard k-e model in predicting the streamline, radial velocity components and Reynolds 

shear stresses within a 90° circular pipe bend. The transport equations for turbulent kinetic 

energy k and its dissipation rate s in RNG k-e model have the same forms as in the 
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standard k - e  model with the exception of the additional quantities of the inverse effective 

Prandtl and numbers and aE, and the R term in the s equation. 

akMeff 
8k 

+  G k + G b - p e - Y M  + S k  (4.4) 

d ( \ d , \ ô 
<*eVeff 

de 
+ cuT(Gk +C3eGb)-C2ep—-Rs +Ss (4.5) 

k k 

In these equations, G& represents the generation of turbulence kinetic energy due to the 

mean velocity gradients. When using the Boussinesq hypothesis, it can be calculated as 

(4.6) 

Gfr is the generation of turbulence kinetic energy due to buoyancy. When dealing with the 

ideal gas, it can be calculated as 

Gb = ~g, M, dp 
pVx, dxt 

(4.7) 

YM represents the contribution of the fluctuating dilatation in compressible turbulence to the 

overall dissipation rate. It can be calculated as 

Yu = 2peM] 

Where M* is the turbulent Mach number, defined as 

(4.8) 

M, = J— (4.9) 

The quantities ak and aeare the inverse effective Prandtl numbers for kznàe, respectively. 

They are computed using the following formula derived analytically by the RNG theory: 
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a-1.3929 
0.632! 

a:+ 2.3929 
0.3679 

_ M mol 
a0 -1.3929 a0+2.3929 Veff 

(4.10) 

Where org =1.0. In the high-Reynolds-number limit [fimoi /neff({\), = ae « 1.393 

The main difference between the RNG and standard k - s models lies in the additional term 

in the s equation given by 

R  =  C / j p t j 3 { \ - T J / T J 0 ) £
2  

(4-11) 
1  +  f i r j 3  k  

Where rj  = Sk/e ,t]q = 4.38,/? = 0.012 

Among the above equations, S is the modulus of the mean rate-of-strain tensor, defined as 

S-J2S,S,  (4.12) 

jjt is the turbulent viscosity which is computed by combining k and e as 

M, - pCti (4-13) 

with Cp = 0.085 

The model constants C\e =1.44, = 1.92, and S£ are user-defined source terms. 

In addition to solving the transport equations for the continuous phase, the trajectories 

of particles in a discrete second phase (dispersed phase) are computed in a Lagrangian 

reference frame. Coupling of the two phases is included, where the particle trajectories and 
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the continuous phase flow affect each other. The trajectory of a discrete-phase particle is 

predicted by integrating the force balance on the particle, equating the particle inertia with 

the forces acting on the particle 

Here, ugi is the gas-phase velocity, upi is the particle velocity, ug is the viscosity of the gas, 

p is the gas density, pp is the density of the particle, and Dp is the particle diameter. Re is 

the relative particle. Eq.4.14 describes the balance of forces acting on the particle. The term 

on the left hand side is the inertia force acting on the particle due to its acceleration, and the 

right-hand side terms are the external forces acting on the particle. 

I 8 u g / P p D p  ( C D  R e ) / 2 A { u g i  - u p i ) is the drag force (in the ith direction) per unit particle 

mass and the second term g; ( p p  - p ) /  p p  is the buoyancy force due to gravitational 

acceleration, and Fx represents the other external forces, for example, "virtual mass" force, 

Basset force, which can play important roles in calculating under special circumstances. 

Despite the readily available code, the selection of appropriate boundary conditions is 

critical in obtaining meaningful information in the case of the particle flow. In particular, 

Huber and Sommerfeld [10] demonstrated the importance of simulating particle-wall and 

particle-particle interactions and the dominant effect that this has on the particle stream. 

These effects are beyond the scope of this work. In Fluent, no particle-particle interaction is 

available. 

4.3 Validation 

(4.14) 
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The overall objective of validation is to demonstrate the accuracy of CFD code so that it can 

be used with confidence for fluid simulation and so that the simulation results can be 

considered credible for decision making in design. Validation is defined as "the process of 

determining the degree to which a model is an accurate representation of the real world from 

the perspective of the intended uses of the model" [35]. A good tutorial on CFD code 

validation is presented on the NASA Verification and Validation website. The most common 

way to validate the accuracy of a CFD simulation is to compare CFD results to available 

experimental data. In this study, the tests of the validity of the Fluent™ DPM (discrete 

particle model) model include: 

• compare simulation results with the experimental results from existing literature; 

• compare baseline simulation results with the plant's measurements. 

4.3.1 Comparison of CFD Results with Experimental Data 

Yilmaz and Levy [16] carried out a series of experimental studies to understand the 

formation and dispersion characteristics of ropes in a pneumatic conveying system. The 

majority of the experiments were performed in the flow geometry, which consisted of a 

horizontal pipe with a length of 5 pipe diameters, the elbow section, and a vertical pipe with 

a length of 20 pipe diameters (See Figure 4.1). The elbow is a 90° elbow and the radius of the 

elbow is three times the pipe diameter. Table 4.1 shows the dimensions of this facility. The 

experiment facility was operated with gas velocities from 15 to 30m/s. The ratio of solids to 

air mass flow rates were from 0.33 to 1.0. Velocity was determined from two closely 

streamwise positioned fiber optic probes using continuous wave laser light and the 

concentration was determined by the obscuration of laser light over small distance by 
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comparison with calibration data. The data obtained shows the overall pattern of the rope. 

The time-varying nature of the rope was illustrated by the concentration measurements at 

various radial locations; 

Table 4.1 Geometry sizes of the testing facility 

Pipe Diameter (m) 
Horizontal pipe 

length (m) 
Vertical pipe 
length (m) 

Elbow Radius 
(m) 

0.154 0.77 3.08 0.462 

SECTION M 

FLOW 

Figure 4.1 Sketch of the testing flow geometry [6] 

Validation of the CFD model to ensure the accuracy of its application in gas-solid 

flows is first completed using experimental results of Yilmaz and Levy [6], by comparing 

both quantitative and qualitative trends. In the CFD simulation, the gas and particle flow 

through this experimental geometry was modeled numerically using the grid shown in Figure 

4.2. The model is three-dimensional with 108,216 computational cells. The mesh was 

generated using Gambit™, the preprocessing software companion of Fluent™. 
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Figure 4.2 Grid layout for the testing model 

Turbulence quantities were calculated using the following relations [6]: 

Kinlet ~ ~ 

fU U inlet 

\  1 0  y  

(4.15) 

*--£§ <416) 

The velocity at the inlet was defined using a "velocity-inlet" boundary condition. 

Therefore, the stagnation pressure of the flow was not fixed at the inlet, and the code changed 

it according to the value needed to obtain the prescribed velocity distribution. An "outflow" 

boundary condition was used to model the flow at the outlet since the details of the flow 

velocity and pressure were not known before the flow problem was solved. 

The RNG theory cannot be extended to viscosity dominated flow regions like the 

viscous sublayer of a turbulent boundary layer. Fluent™ implements the wall function 

approach to bridge the viscous sublayer; such a technique permits skipping the detailed 

solution of the flow field inside the boundary layer. It connects the potential field (outside the 

boundary layer) to the wall with statistical laws coming from the turbulent boundary layer 
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analysis. In this case, the boundary layer was treated using the standard wall function 

approach. 

The pressure-velocity-coupling algorithm SIMPLEC introduces pressure into the 

continuity Eq.4.1 and can achieve quick convergence in problems where pressure-velocity 

coupling is the main deterrent to obtaining a solution. The second-order upwind 

discretization scheme was used for the momentum, turbulent kinetic energy, and dissipation 

rate equations. 

The Rosin-Rammler Diameter Distribution method was used to calculate the particle 

size distribution in the simulation. The distribution function can be written as 

MD = exp (4.17) 
. D , 

Where M PIS the mass fraction of the particles with diameter greater than Z>and D is the 

mean diameter, with n representing the spread of the data from the mean. Table 4.2 shows 

the particle size distribution of pulverized coal in the experiment. Table 4.3 shows how this 

was implemented in the CFD codes. 

Table 4.2 Particle size distribution of pulverized coal 

Diameter {ftm) Weight (%) 
>125 1.5 

106-125 11.0 
90-106 17.9 
75-90 16.7 
63-75 13.1 
45-63 20.1 
<45 19.7 
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The required grid resolution was established by increasing the grid until the details of 

interest are independent of the grid. In this case, the amount of grid in the piping cross-

section is the critical determinant to obtaining accuracy. Figure 4.3 shows the final grid (with 

108216 cells) that was chosen. Figure 4.4 shows the grid with the next highest resolution 

(with 121576 cells). Figure 4.5 compares the CFD results of these two different grids, 

showing the gas velocity profiles in the x direction at different z/D distances. The absolute 

values of velocity magnitudes at the different distances did not vary significantly for different 

grid sizes. The comparison shows that the two grids have a very close velocity profile, 

indicating the acceptability of the grid. 

Table 4.3 Particle Injection Properties 

Particle mean diameter ( ton ) 75 
Min diameter ( jjm ) 25 

Max diameter ( /jm ) 150 
Spare number 2.33 
Spread number 7 

Density (kg/mA3) 1680 
Mass flow rate (m/s) 0.22056 

Figure 4.3 Final grid for pipe cross-section Figure 4.4 The compared grid for pipe 
(with 108216 cells) cross-section 

(with 121576 cells) 
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Figure 4.5 Comparison of CFD results with two different grids 

(Note: In the above graphs, gas_z* represents the gas phase velocity at z/D-*, for example, 

gasj.17 represents the data that was picked from the pipe cross-section at z/D=l 7) 

After a fully converged continuous phase flow field was attained, particles were 

added to the main stream. After several tests, it was decided to use surface injection in this 

project. Using this injection method, one particle is released for each cell in the injection 

surface. Every particle carries the same solid mass flow rate. The initial particle velocities 

were set to the average conveying gas velocity. Five stochastic attempts were used to 

simulate turbulent dispersion of the particles, imposing random effects on the turbulence 

quantities calculated in the fluid medium. Figure 4.6 shows the particle concentration profiles 

along the pipe diameter in the x direction at different z/D distances. In order to compare with 

other people's work, Yilmaz's [16] simulation results using CFX™ are also listed in Figure 

4.6 as a green line. In most cases, Yilmaz's simulated particle concentrations show a greater 

departure from the experimental data than the computational results obtained in this project, 

especially near the wall. The values of particle concentration between the simulations and 

experiments are in good agreement at a short distance from the bend (z/D=l, z/D=3) and the 
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values at distances further from the bend exit (z/D =9 and z/D=13) compared very well. As 

Yilmaz pointed out the dispersion of ropes is caused by the secondary flow. As shown in 

Figure 4.7, two main vortices are present; this correlates well to the two main vortices 

calculated by CFX™ from Yilmaz and Levy. Low fluid velocities near the outer wall reveal 

two minor vortices distinct from the two main vortices due to the presence of a solid phase. 

The comparison between the simulation results and experimental data shows that we 

are able to capture sufficient flow detail to provide reasonable results for the case examined 

here. The simulation data predicts slower dispersion of the coal rope than was observed in the 

laboratory. Considering the complexities of the flow phenomena, the comparison showed 

good agreement between the experimental data and simulation. The primary impact of the 

faster predicted dispersion of the rope is that actual coal roping is likely to be better than 

predicted coal roping. This likely occurs because the simulation ignores particle-particle 

interactions and the particle-wall collision is too simple. Based on this, we can use Fluent™ 

for our engineering model provided we exercise good engineering judgment when using the 

simulation results. Subsequently, CFD simulation was applied to analyze the real flow field 

in a real coal transporting pipe. 
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Figure 4.6 Comparison of CFD predictions and experimental data 

(Note: In the above graphs, solid_z* represents the solid distribution concentration at 
z/D-*, for example, solid_z!7 represents the data that was picked from the pipe cross-
section at z/D=l 7.) 
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Figure 4.7 Secondary flow pattern in two phase flow for R/D=1.5, Y/D=0.5 

4.3.2 Comparison Baseline Simulation Results with Plant Measurements 

Although the coal rope phenomenon has been experimentally measured in simplified 

geometries, no detailed experimental data for the complex piping system accumulated in an 

actual power plant is available. Based on this, an initial baseline simulation was also 

performed to model the current operating condition and to verify the accuracy of the model. 

The model uses air velocities and solids loading ratios (the ratio of the solid and gas mass 

flow rate) typical of those in utility power plants. The main variables for simulation are 

chosen as described in Section 4.2.1. The RNG k-s, along with Lagrangian particle 

tracking, is used to model the gas-particle flows through the testing pipe. Turbulence 

quantities were calculated using Eqs. 4.5 and 4.6. The diameters of the computational 
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particles at each starting location were stochastically sampled from a Rosin Rammler 

distribution function. Table 4.4 shows the particle properties and Table 4.5 shows the flow 

parameters used in the simulation. 

Table 4.4 Particle injection properties 

Particle mean diameter ( f j m )  20 
Min diameter (/zm) 1.7 
Max diameter ( jam) 230 

Spare number 1.4064 
Spread number 10 

Density (kg/mA3) 1680 
Mass flow rate (m/s) 25.94 

Table 4.5 Flow parameters of the simulation 

Inside diameter (in) 26 
Area of coal pipe (ft2) 3.687 

Temperature at exit of coal mill (F) 125 
Density of primary air (lb/ft3) 0.067986 

Viscosity (lbm/ft-hr) 1.324444 
Coal flow rate (lbm/s) 10.05787 

Primary air to coal ratio 2 
Primary air flow per pipe (lbm/s) 20.11574 

Primary air velocity (ft/s) 85.09 

4.3.2.1 Bifurcator 

In order to build this baseline model, a model of a rope splitter, which is used in the baseline 

pipe, has to be built first. The device of interest is a bifurcator which is used in large coal-

fired power plants. This bifurcator is used in the very complex pipework between coal mills 

and burners that is necessary to ensure a uniformly distributed supply of the burners with 

pulverized fuel from the coal mills. For the purpose of dispelling coal ropes the bifurcator 

model contains a very complex structure; it consists of a system of 78 different inclined 

channels that are directly attached to a system of vanes that lead the flux alternative to both 
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legs of the bifurcator. Figure 4.8 shows the structure of the bifurcator in a pipe. If a rope 

meets the riffle box, it is dispelled by the checkerboard like system of channels in several 

parts that are then distributed to both legs because adjacent channels always lead to different 

legs. The construction of a numerical grid is challenging because of the complex structure of 

the fixtures. First, all the 78 channels inclined against each other are a serious problem 

especially for a structured grid that consists of hexahedrons, so the grid in this region has to 

split into different branches that pass either a left inclined or a right inclined channel. To 

achieve this, a thin layer between the sets of left and right inclined channels that does not 

belong to the gridded area forms a thin wall of finite thickness. After passing the channels the 

grid unites again and must map to the guiding vanes that alternately lead to the left and the 

right leg of the bifurcator and form a triangular structure, which is also difficult to grid with 

hexahedrons. The position of the guiding vanes marks the block boundaries in the interior of 

the triangle which causes another difficulty. 

Grid-independence tests were conducted in this bifurcator first. Some of the results 

are shown in Table 4.6 and Table 4.7. The bottom part of Figure 4.9 shows the gas velocity 

magnitude on the testing line. From these comparisons, grid3 and grid4 show a very close 

result. The results did not vary by more than 3% when the grid size was varied by as much as 

50%. 
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Figure 4.8 Bifurcator structure 
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Table 4.6 Numerical grid resolution for bifurcator 

Cell Number Node number 
Grid 1 284,298 326,051 
Grid 2 413,750 476,422 
Grid 3 569,647 656,337 
Grid 4 767,423 882,495 

Table 4.7 Comparison among four different grids 

Leftout (lbm/s) Rightout (lbm/s) LeftAverage (ft/s) RightAverage(fVs) 
Grid 1 10.015812 10.094857 35.313 34.547 
Grid 2 9.981 10.132823 34.542 33.600 
Grid 3 10.0207 10.09333 34.694 33.772 
Grid 4 10.011785 10.102689 34.389 33.558 
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Figure 4.9 Fluid velocity (single phase calculation) in the diagonal line at the leftout 

4.3.2.2 Baseline Pipe Validation 

The baseline pipe chosen in this study is an actual pipe used in a power plant to transport 

pulverized coal from the mills to the burner. Figure 4.10 and 4.11 shows the operating 

pipework of the baseline model. Pipe material is steel walled pipe; the total pipe height is 37 

ft, with nominal inlet pipe diameter 26 inches. The bend radius to pipe diameter ratio is 7.85 

for two bends before the bifurcator. Immediately downstream of the splitter the two branches 

are 20 inches in diameter and the bend radius to this pipe diameter is 7.2. Between the mill 

and the splitter, there is an orifice line to control the airflow rate in order to balance the flow 

rate among the four pipelines that come out of the same mill. The left branch after the splitter 

has an extra orifice in order to balance the airflow rate between the two branches. Bend 1 is 

fitted to the flow direction of vertical upward to a horizontal straight. Bend 2 is for the flow 
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direction of horizontal-to-vertical downward, and Bends 3 and 4 are vertical-to-horizontal 

after the splitter. Bend 5 features a direction of flow from horizontal to horizontal, and bends 

6 and 7 are horizontal-to-vertical upward. Bends 8 and 9 are vertical-to-horizontal. The pipe 

and bend portions were modeled numerically using the grid shown in Figure 4.12, which is 

similar to the grid used for comparison with the experiment data (Section 4.2.1). 

Figure 4.13 gives an impression of the erosion in the entrance region of the bifurcator. The 

results from the pipe simulation were compared to the areas of high damage from coal 

particle erosion in the plant. Here, red regions represent a maximum of particle 

concentration. The particle concentration of an area increases as the color of the area 

approaches red. The circled areas are those with higher particle concentrations. As shown, 

the areas with significant erosion match those areas identified by the simulation as having 

high particle concentrations. Thus, the numerical simulation is in very strong agreement with 

field-observed zones of high erosion. Based on this, the computational model is capable of 

simulating the real coal pipe in the field condition and can be used for the design or 

modification of a coal transport piping system with confidence. 

Figure 4.10 The schematic of the baseline pipe (top view) 
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Figure 4.11 The schematic of the baseline pipe (front view) 

Figure 4.12 Grid layout on the cross-section of the baseline pipe 
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Bifurcator 

Particle concentration on the inlet of the distributor 

Figure 4.13 Comparison between actual erosion holes and simulation data 

4.3 Baseline Simulation Results and Discussion 

The computations were performed on a PC with dual Intel Xeon™ processors running Red 

Hat Enterprise Linux Workstation 3. The CFD calculation revealed the air and particle flow 

patterns in the pipe. The predictions start with a uniformly distributed inlet velocity of 

24.5m/s. 

The corresponding particle distribution in the entire pipeline is shown in Figure 4.14. 

As shown in these figures, the slow moving stream of particles against the wall contains most 

of the mass of the powder delivered. Each bend in the circuit clearly affects the particulate; 

subsequent to each bend, secondary flow structures cause uneven distribution of particulate 

concentration in the cross-section. In significantly long horizontal sections which is 

downstream from a vertical-to-horizontal bend, the rope was symmetrically positioned and 



www.manaraa.com

83 

was located at the wall downstream of the outer radius of the elbow as Yilamz [16] pointed 

out. The single-elbow configuration produces a double vortex which is symmetrically 

positioned within the pipe cross-section and is aligned with the axis of the inlet pipe. 

Secondary motion and flow turbulence created by the bend causes the rope to move towards 

the center of the pipe as it flowed downstream from the bend exit. Gravity also causes the 

concentrated particulate to fall. Therefore, before the rope hits the orifice, most of the 

particles move towards the bottom of the pipe. Due to the bigger mixing mechanism caused 

by the orifice installed in the horizontal pipe, particles are carried into the main stream and 

most particles are concentrated in the center part of the pipe cross-section. When the two-

phase flow enters the second bend, the similar coal roping structure is created again. 

However, the typical spiraling of the particle stream near the wall is not observed after the 

second bend because of the orifice. Figure 4.15 and Figure 4.16 show the particle 

distributions in the section upstream of the bifurcator. 

As previously discussed in the above section, the splitting of the particle-stream due 

to the bifurcator can be observed especially on the entry region where three areas of higher 

erosion are to be observed. Uneven particle distribution in the bifurcator leads to different 

impact flux of particles, which is a strong influence factor on erosion. Due to the fact that the 

bifurcator is designed for the destruction of particle ropes, it is extremely susceptible to 

particle erosion. One observation from Figure 4.13 is that the erosion is focused mainly in the 

lower part of the riffle box, which is where the most particles are accumulated in this area 

due to the rope effect. In this entry region of the riffle box the main gas-solid flow has not yet 

adjusted its direction to the inclination of the guiding vanes. Therefore, the coal particles hit 

the guiding vanes in this inlet part of the bifurcator under higher incidence angles causing 
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higher erosion rates at these locations. Although the particle were mostly on the back of the 

cross-section in front of the bifurcator, the riffle box makes sure that the particle mass flow is 

subdivided nearly uniform(around 15% imbalance) to both legs of the bifurcator. The 

particles concentrate near these vanes due to inertial effects and form certain ropes that will 

be redistributed upstream over the entire cross-section by the particles interaction with the 

fluid turbulence. Further downstream the coal particles adjust quickly to the new flow 

conditions due to their small particle diameter and relatively small particle density. The small 

inertia of particles results in very small impact angles for particle-wall collisions on most 

parts located downstream of the bifurcator and pipe walls. Therefore, the erosion in this part 

of the bifurcator is less significant. Only those regions where the main particle flow is not yet 

oriented in the direction of the guiding vanes that lead to the front and the back leg are hit 

with a remarkable quantity of particles under effective angles of attack leading to higher 

erosion rates at this location. The particles' travel path is shown in Figure 4.17. As indicated 

in Figure 4.17, not only was the coal flow not distributed evenly, but most large particles (red 

particles) mainly went to the front branch. Therefore, it is likely that the front part of the 

bifurcator will suffer more severe erosion. Results of the computations can be seen in Figure 

4.18; they give an impression of the velocity field in the bifurcating region. 
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Figure 4.14 Particle distribution (kg/m3) in the whole baseline model 
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Figure 4.15 Particle distribution in the pipe upstream of the bifurcator 
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Figure 4.16 Particle concentration on the cross-sections in the pipe upstream of the bifurcator 
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Figure 4.17 Particle path near the distributor 
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Figure 4.18 Velocity contours of bifurcator 

Figure 4.19 shows the corresponding particle concentration profiles in the pipe 

downstream of the bifurcator. The rope was stationary, but it spiraled around the inside of the 

vertical pipe adjacent to the pipe wall. The angular position of the center of the rope angle 

can be seen in Figure 4.20 which shows the concentration of powder on several sections 

across the pipe. The spiral is dampened within only a few pipe diameter lengths downstream 

of the bend. In contrast to the single bend effect, the secondary flow field set up by two 

elbows prevented motion of the rope away from the pipe wall. Once the rope is formed, the 

destination of the particles is determined by the wall conditions due to the low air velocity in 

the boundary layer and the effect of gravity in the vertical sections. Bilergan [17] shows that 

angular position of the rope, peak particle concentration, and particle velocity within the rope 

depends strongly on the length of the pipe connecting the two elbows. The numerical 

simulations show that the gas phase secondary flow fields generated in the elbows are 

responsible for the spiraling motion observed in the double-elbow case. The double-elbow 
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geometry produces a secondary flow field dominated by a single vortex which causes large-

scale rotation over the pipe cross-section. 

The shift of the particles around the cross-section prior to a split can be observed, and 

the split ratio is determined by the distribution of particulate concentration within the dense 

rope. The work suggests that in order to control the split, the position of the rope must be 

controlled, either by getting it away from the wall and then re-diverting the dispersed rope, or 

by forcing the wall-bound rope to a predetermined position on the wall. 

Figure 4.19 Particle distribution in the pipe downstream of the bifurcator 
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Figure 4.20 Particle concentration on the cross-sections in the pipe downstream of the 
bifurcator 
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Chapter 5 Implementation of CFD Optimization Design System 

To develop a coal transport pipe system design tool that allows efficient exploration and 

visualization of design alternatives, the coal transport system simulation and evolutionary 

optimization algorithm need to be linked together so that proposed design changes are 

automatically evaluated. In this chapter, the CFD-based optimization in this work is 

introduced with a special focus on a fast calculation algorithm in order to reduce 

computational time and increase search performance. After the description of this 

optimization design environment, its performance is demonstrated by a simple pipe design 

example. 

5.1 Traditional CFD-based Optimization Process 

Combining high-fidelity simulation models such as CFD into population-based optimization 

tools is a significant challenge. The fast calculation algorithm we propose here is based on 

the converging characteristics of CFD computing and the fitness function evaluation in an 

EA process. Before presenting the modified design engine, a brief description of the 

traditional CFD-based optimization problem will be presented. Essentially, a CFD-based 

design optimization problem is no different from other design optimization problems. 

Assume, without loss of generality, that a minimization problem can be formulated as 

following: 

Find P 

Minimize (5.1) 
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Where s(p,/)<0 

in which p represents the design variables (for simplicity, we focus on shape optimization in 

fluid engineering; hence, p contains geometry shape parameters), p* denotes the optimum 

solution, <j> is the feasible space for design variables p, D = {Dl,D2,---,Dm} represents an 

objective vector with m objective functions to be minimized, and S represents constraint 

functions. In general, these functions are given explicitly in terms of dependent flow 

variables / and in terms of geometric quantities. / is a vector of unknowns determined by 

the governing equations, containing velocities, static pressure and possibly turbulence 

modeling quantities such as k and e. In other words, the flow field variables are decided by 

solving the flow governing equation F which is subject to the boundary condition B. Clearly, 

the flow is implicitly controlled by the design parameters through surface parameterization, 

mesh generation, and flow analysis. The flow governing equation F can be Navier-Stokes, 

Euler, potential flow equations or an approximation of any of these equations. 

The traditional CFD-based design optimization process, a two-cycle procedure, can 

be seen in Figure 5.1. The optimization process starts by giving a proposed design vector p. 

The inner iterative cycle solves the analysis problem for / given a proposed design p, while 

the outer iterative cycle determines the optimum p*. Since the values of objective and 

constraint functions depend on the flow field solutions, the flow governing equation F must 

b(p,/)=0 

F{P,J)= 0 

(5.2) 
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be solved every time D is evaluated. The system optimization continues until the 

optimization converges and an optimal system is obtained. 

Figure 5.1 Traditional two-cycle optimization procedure 

When using CFD to solve a flow field (the inner cycle), the governing partial 

differential equations F and the boundary condition equation B are approximated by a large 

set of coupled algebraic equations of discrete variables. These algebraic equations are often 

nonlinear and hence are solved by an iterative technique. A solution is guessed, the equations 

are linearlized about that solution and a correction is found by solving the linear equations. 

The process is repeated until a converged result is obtained. Such iteration procedures are 

generally driven to minimize some residual of the system. A common and effective strategy 

used in CFD code is to solve the unsteady form of governing equations (F) and march the 

solutions in time until they converge to a steady value. The design vector p is held fixed 

while the flow solution evolves in time. It is updated only after the flow solution is 

converged to a steady state. Usually, some selected measure of the difference between 
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and ft ( t -time step) is referred as the residual. Although different CFD codes have different 

definitions for residual, the most common definition is shown in Eq. (5.3): 

i n  w h i c h a n d  f ,  r e p r e s e n t  t h e  v a l u e s  o f  f l o w  f i e l d  v a r i a b l e s  i n  t w o  c o n t i n u o u s  s t e p s ,  a n d  TV 

is the number of cells in the flow field, which means this definition keeps every cell in the 

flow domain in consideration. For most CFD analysis models, the result is considered 

converged when R falls into the level of 10"6. When dealing with CFD simulation itself, this 

convergence criterion is necessary since the goal of the CFD solver is to get accurate flow 

data. However, in the CFD-based design optimization process, only the objective function 

values are used to drive the search process. Usually, all basic operators, such as crossover 

and mutation, are only dependent on the fitness value when using EAs as the search method. 

By defining a suitable objective function, engineers can choose which information they need 

before the search procedure starts. Therefore, it is not necessary to spend time waiting for the 

CFD solver to calculate something that will not be used in the design process if the fitness 

function reaches the value that is no longer being affected by the precision of the flow field 

variables. In other words, the design decision can be made even though the flow field 

variables are not yet completely converged from the CFD analysis point of view. 

R = (5.3) 
N |_ 

5.2 Modified CFD-based Optimization Process 

As mentioned previously, traditional optimization iteration is typically a nested two-cycle 

process. It consists of two convergence criteria for the inner and outer cycles: the 
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convergence of flow field variables for the inner cycle and the convergence of design 

parameters for the outer cycle, respectively. By observing many practical engineering cases, 

we found that the fitness function generally converges much faster than the flow field 

variables. Figure 5.2 shows how fitness values typically change with CFD iterations. In both 

cases, the convergence of flow field variables need about 2500 CFD iterations, while the 

fitness values come to stable values at around 250 iterations. Figure 5.3 shows the velocity 

contours at different CFD iterations. As shown in the figure, the contour for iteration 230 and 

1250 didn't change much. For this case, if the fitness is based on the velocity on the surface, 

the inner cycle CFD iteration can be terminated at around 250 iterations saving 90% of the 

CFD computing time without dramatically affecting the design. 
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2238 Inner-cycle Iterations 
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0.2- : ' 
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Figure 5.2 Fitness values with CFD iterations 

(a) (b) (c) 

Figure 5.3 Velocity contours on (a) iteration 147 (b) iteration 230 (c) iteration 1250 
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Based on this observation, a modified two-cycle CFD design optimization process 

was implemented. As shown in Figure 5.4, the objective function £> and constraint function S 

were moved into the CFD iteration cycle, and the fitness value is calculated and used as the 

second convergence criterion in the inner cycle. Hence, at the end of each step of the CFD 

iteration, the objective function, or the fitness function in this case, is calculated, and the 

CFD iteration stops when either the flow field residual or fitness value converges. In other 

words, in the modified CFD-based optimization algorithm, the CFD solver monitors the 

convergence dynamically not only by checking traditional residuals but also fitness residual 

in order to reduce the number of iterations needed. Adding an objective function evaluation 

into the CFD iteration will increase the computing burden slightly. However, this extra time 

is small compared to the time saved by reducing the number of iterations needed. For 

instance, in our example case, which will be discussed later, by using the modified two-cycle 

optimization procedure, the reduction in time can be as high as 95%. 

) 
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Figure 5.4 Modified two-cycle optimization procedure 
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Adding fitness residual into the CFD iteration cycle when using Fluent™ is simple. It 

can be accomplished by an external C user-defined function (UDF). The UDF can be 

dynamically loaded with the Fluent™ solver to enhance the standard features of the package; 

by doing this, the original model does not need to be changed. A suitable numerical routine 

has been developed as a part of the UDF with the purpose of interpolating input and output 

data from the fitness calculation to the fluid dynamic one and vice versa. The UDF and the 

Fluent™ solver interact in the following manner: at each iteration, the UDF receives input 

values needed by the fitness function from Fluent™ and returns output as the fitness residual. 

The calculated fitness residual is then used by the Fluent™ solver for checking for 

convergence. If convergence is being monitored, the CFD solution will stop automatically 

when each variable meets its specified convergence criteria. 

5.3 Software Integration 

The flow chart in Figure 5.5 gives an overview of the CFD-based optimization process. As 

indicated, the process proceeds in an iterative manner, for each feasible design change, a 

CFD analysis is automatically executed in the background to evaluate fitness (e.g., the fluid 

and particle concentration of the design). The CFD analysis is followed by another design 

change along with the computational re-meshing of the new design. The design is again 

evaluated, and through this evolutionary optimization process, the best design is found. 
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Figure 5.5 Flow chart of the CFD-based optimization process 

The practical integration of optimum design tools into engineering design 

environments is a multi faceted endeavour, which encompasses diverse disciplines such as 

geometric modelling, mesh generation, analysis, optimization and software engineering. The 

optimization design tool must include a special geometry modification tool to handle three-

dimensional designs; additionally, mesh generation tools and a multiphase CFD solver must 

be included. A user centered interface, which will be discussed later, is also needed to drive 

the system. In general, this process includes setting up a CFD-problem, solving it, and 

extracting data for the EA optimization process. A description of some of the major 

components in the process follows: 
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(a) Grid Generation — In order to carry out the flow simulation, automatic grid generation is 

necessary; for fast grid generation the grid topology is kept unchanged. Therefore, the 

modification of the geometry is restricted. A Gambit™ journal file was used to automate grid 

generation; Gambit™ journal files are text files that contain Gambit™ program commands 

and parameters. Gambit™ parameters constitute numeric or string constants that one can use 

in any modeling or meshing operation in lieu of actual numerical or string input. For 

example, if one defines a numeric scalar parameter named "r" with a value of 1.0, one can 

execute the following command from within a journal file to create a sphere of radius 6.25 

units. "$r=1.0" "Volume create sphere radius $r". A C++ program was written to 

automatically generate the journal. The main function of the file is to update the parameters 

which define the geometry. This journal file takes the number of grid points and the 

clustering parameters as its input. The wall and boundary conditions are also specified in the 

journal files and stored in mesh files. The C++ program creates a different journal file for 

each design case; this allows the complete process of grid generation to be invoked in a batch 

mode of operation using a single Gambit™ journal file. 

(b) Analysis Using Fluent™ — The process of grid generation is integrated with the solver 

through Fluent™ journal files. A Fluent™ journal file contains a sequence of Fluent™ 

commands, arranged as they would be typed interactively into the program or entered 

through the Fluent™ GUI. The purpose of ajournai file is to automate a series of commands 

instead of entering them repeatedly on the command line. The mesh files contain the grid and 

boundary conditions; when one is ready to perform a large number of iterative calculations, 

he or she can run Fluent™ in batch or background mode. The batch mode allows the 

computer resources to be prioritized and enables users to control the process from a journal 



www.manaraa.com

101 

file. The Fluent™ journal files specify the input file format, flow model specifications and 

parameters such as the underrelaxation factor, boundary conditions, simulation details and 

the output format. Therefore, executing the CFD solver can be reduced to preparing a single 

script. 

(c) Fitness Evaluation — The most difficult part of an automatic optimization is the 

definition of a suitable quality function, which has to be minimized or maximized. The 

quality function depends very much on the specific situation and requires a lot of experience. 

Often it contains not only fluid dynamical parameters but also economical aspects. For 

example, in the coal pipe design case adding an orifice may increase the disperse mechanism 

which is good for rope dispersion, but it also raises the pressure drop in the pipe which in 

turn causes more power consumption. In order to simplify the problem, only fluid dynamic 

parameters are applied as a cost function in this project. Thus, the objective function depends 

on the solution of the CFD model, which depends on the shape of the flow domain. A 

program was developed using the Fluent™ API to access the flow variables, calculate the 

fitness, and store the result in an output file which may be accessed by the optimizer. The 

fitness values are also used to stop the CFD iterations when the convergence criterion is 

satisfied. 

(d) Post-Processing at the End of Inner-Cycle — This involves the interactive design feature 

which will be discussed in chapter 7. 

(e) EA Optimization engine — The EA optimizer utilizes simple Evolutionary Algorithm 

optimization software currently. It can be understood as a stand-alone method which includes 

several components: selector, crossover, mutation, and replacement. In classical EAs, a 

binary coding is used for genes. Instead, we use floating point coding. This is more natural 



www.manaraa.com

102 

for this project, since the genes here are real-valued design variables. At the beginning the 

initial population is created and the fitness function is calculated for each individual. After 

assigning the fitness to each pipe configuration, by default, selection for mating is performed 

by a tournament selection method. Moreover, elitism, that is the best individual replicated 

into the next generation, is invoked. This ensures the survival of the best individual from 

each generation, and a pipe configuration with high fitness has a higher probability of 

contributing in the next generation. Crossover proceeds in two steps. First, selected pipes are 

coupled at random. Second, each pair of pipes undergoes a partial exchange of their design 

vectors at a random crossing site with a probability. This results in a pair of individuals of 

new generation. After that, Gaussian mutation is used to generate two children. Then, two 

random creatures from the last generation, excluding the two creatures with the highest 

fitness values, were replaced with the newly generated creatures. In this way, creatures with 

better fitness values are likely to generate more offspring in the following generation. 

Several challenges were overcome to develop this design tool. The optimization 

engine has to be a general-purpose utility. Otherwise, users will have to spend considerable 

effort to rewrite the software every time a new optimization task arises. Our design 

environment consists of a main program and several subroutines written in C++ that do not 

need to be changed by the user. In order to solve a design problem, the user must prepare 

additional C++ subroutines for the program. Customizing these subroutines for specific 

applications allows for maximum application performance. What follows is a description of 

the program and its subroutines; the reader is assumed to possess a basic familiarity with 

C++. In the main program, several important classes are defined to treat general EA 

optimization problems: 
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CreatureFactoryBase defines a base application interface that is inherited from to 

create customized initialization methods to start the EAs. It holds information about the first 

generation and encapsulates all the information about the EA's settings. This includes 

information such as population size, mutation rate, crossover rate, and the other control 

parameters being used. CreatureFactoryBase is also responsible for accepting all design 

information such as the design parameters' name, and upper and lower limits of the design 

parameters. Figure 5.6 shows the class information. CreatureBase holds information such as 

number of parameters, the fitness value of this creature, the vector of the current design 

parameters, and if this creature needs to be revaluated. DesignParamBase holds the basic 

information for the design vector, such as its boundary and name. 

In our coal pipe design tool, every pipe has a different geometry. Therefore, the 

design parameters will be different for different pipes. However, once the design information 

is set up, the rest of the performance analysis is very similar. The CalcCase class in Figure 

5.7 executes performance analysis that is needed by the optimizer. It defines a base interface 

that the user can inherit from to define a method to calculate fitness. In other words, this is 

the main function that users need to customize. This abstraction allows users to manage all 

details specific to their fitness evaluation. Another advantage of this abstraction is that users 

can focus on their own fitness evaluations without worrying about connecting with the 

optimizer. A user creates his or her own class which inherits from the CalcCase class, and 

registers itself in the classes constructor. For example, RegisterApp("Pipe_AAD this). A 

very significant benefit of this approach is that it allows integration of diverse EAs and 

models with little to no modifications of the simulation code and models. Therefore, it is very 

easy to switch application cases. 
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CreatureManagerBase handles the details of the EA search process. It includes 

several components: selection, crossover, mutation and replacement as discussed before. 

Different methods for these components can be selected according to users' preferences. 

Although at this stage only simple EA routines are implemented, in order to use different EA 

algorithms (such as GBEA), users can inherit from this base class to implement new 

algorithms. In order to add a different algorithm, all that users need to do is to give it a name 

and register in it the constructor. 
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CreatureFactoryBase 

-myinstanceiCreatureFactoryBase * 
-lookuptable:std::map<std::string. CreatureFactoryBase*» 
-fitness:double 
#creatureinfo:std::map<std::string, DesignParamBase» 
*mycreatures:std::vector«CreatureBase> 

^CreatureFactoryBase 
•-CreatureFactoryBase 
+1 n iti a I izati • n_c re atu re s : va i d 
+SetCreaturelnfo:void 
+GetCreatureChain:std::vector«CreatureBase> & 
+GetDesignParamlnfo:std::map<std::string, DesignParamE 
+Reqistervoid 
+Lookup:CreatureFactoryBase * 

instance:CreatureFactoryBase 

+CreatureFactory_OtherGA 
+~CreatureFactory_OtherGA 
+1 n iti a lizati o n_c re atu res:vo i d 
+SetCreaturelnfo:void 

CreatureFactory OtherGA 

+numparams:int 

+fitness:double 

+evaluated:bool 

+values:std::vector<double> 

CreatureBase 

+activeindex:int 

+upperlimit:dDUble 

+lowerlimit:double 

+paramname:std::string 

DesignParamBase 

+CreatureFactory_StandardGA 
+~CreatureFactory_StandardGA 
+lnitialization_creatures:void 
+SetCreaturelnfo:void 

CreatureFactory StandardGA 

Figure 5.6 Main classes for initialization of the gene chain 
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CalcCaseImp [ 

0.1 

[ 

0.1 
+CalcCaselmp 
+~CalcCaselmp 
+FindFitness:double 
+Run:void 
+SendDataSetToView:void 
+ConvertDataSetToVlk:void 

[ 

0.1 
+CalcCaselmp 
+~CalcCaselmp 
+FindFitness:double 
+Run:void 
+SendDataSetToView:void 
+ConvertDataSetToVlk:void 

Z 

CalcCaselmpForModel 

+CalcCaselmpForModel 
•-CalcCaselmpForModel 
+Run:void 
+FindFitness:double 
+lnitlnfo:void 

CalcCase 

+CalcCase 
+~CalcCase 
+ReqisterApp:void 
+lnit:void 
+FindFitness:double 
+Run:void 
#GetCalcCaselmp:CalcCaselm 
#LookupApp:CalcCase * 

app:CalcCase* 

D..1 
<— 

Figure 5.7 Implementation of the Case 
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CreatureManagorBase 

+~CreatureManagerBase 
+Selector:int 
+Replactor:void 
+Mutator:void 
+Crossover:void 
+Breed:void 
+Get_totalfitness:double 
+Get_averagefitness:double 
+Sort:void 
+Replace:void 
+Reqister:vpid 
+Lookup:CreatureManaqerBase * 

instance:CreatureManagerBase 

CreatureManager OtherGA 

-upperlimits:std::vector<double> 
-lowerlimits:std::vector<double> 

+CreatureManager_OtherGA 
+~CreatureManager_OtherGA 
+Breed:void 

CreatureManager StandardGA 

-upperlimits:std::vector<double> 
-lowerlimits:std::vector<double> 

+CreatureManager_StandardGA 
+~CreatureManager_StandardGA 
+Selector:int 
+Replactor:void 
+Crossover:void 
+Mutator:void 
+GausianMutator:double 
+Breed:void 
+RankSelector:int 
+RouletteWheelSelector:int 
+TournamentSelectar:int 
+UniformSelector:int 
+OtherBelectorint 
+RandomReplaceSelector:int 
+RandomReplace:void 
+RouletteWheelReplace:vaid 
+RandomEliteReplace:void 
+Replace:void 

Figure 5.8 CreatureManager Class 
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5.4 Performance 

This CFD-based optimization design environment is applied to a simplified pipe design case 

in this section. Applying this tool to this simplified model provides a proof of concept and an 

essential test bed; it also enables developers to focus on the methodology and keep the effort 

tractable. The computing time and results are documented and the efficacy of this design tool 

is demonstrated by comparing with the traditional design optimization process. 

5.4.1 Geometry 

The basic pipe geometry consists of a vertical pipe with a length of 5 pipe diameters, the 

elbow section, an horizontal pipe with a length of 15 pipe diameters followed by another 

elbow and a vertical pipe with a length of 3 pipe diameters. Both elbows are 90° elbows and 

the radius of the elbows is 3 times the pipe diameter. The computational model was operated 

with gas velocities from 15 to 30m/s. Table 5.1 shows the geometric dimensions of this pipe 

and Figure 5.9 shows the sketch of the testing pipe geometry. 

Table 5.1 Geometry sizes of the testing facility 

Pipe Diameter, d  (m) 
First Vertical 
Pipe Length 

Horizontal 
Pipe 

Length 

Second 
Vertical Pipe 

Length 
Elbow Radius 

d  =0.154 5 x .  d  1 5  x d  3 x d  3 x d  
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Rorifice-minor 

A-A 

Figure 5.9 Sketch of testing pipe geometry 

5.4.2 Object Function 

Orificing the coal pipes has been done in the past with fixed orifices to improve the air 

distribution. By using adjustable orifices with actuators the air distribution can be influenced 

and set to the target values. This method has a serious disadvantage, however; an orifice 

creates additional pressure drop and mainly influences the flow of the transport air in the 

pipe. Due to changes in pressure drop the particle distribution is only changed indirectly. 

This can result in operation with insufficient transport airflow and consequently endanger the 

coal layout in the horizontal pipe. However, because it is easy to install or replace with 

relatively low cost orifices are widely used in pipelines today. Since we want to keep the 

pressure drop, the question becomes how can we maintain the pressure drop level and at the 

same time increase the speed of rope dispersion. Therefore, in our test, to break the coal rope, 
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one elliptical orifice was installed somewhere in the long horizontal pipe with fixed opening 

to preserve the pressure drop. It is well known that in a single-phase flow, fluid that enters 

through a noncircular inlet entrains more fluid than does comparable fluid entering through a 

circular inlet. If this is also the case for gas-solid flow, the stronger mixing mechanism 

causes the dispersion rate of the coal rope to increase. Although there is no literature that 

discusses using elliptical orifices in the coal pipe, in this case study, this approach has shown 

that elliptical orifices can be used to increase dispersion rate for coal roping. The lower part 

of Figure 5.9 shows the parameters that determine the shape of the orifice. The design 

parameters in this case include the location of the orifice, L, the orientation of the orifice, 0, 

the ratio of the radius of the orifice (Rodfic-major), and the pipe, r . The goal of the pipe design 

optimization is to minimize the coal distribution difference at the exit surface of the pipe. To 

facilitate a quantitative comparison between the cases with different orifices, a mixing index 

(MI) defined by Bilirgen [68] is used as the index to the coal distribution. The mixing index 

is computed using: 

Where C p  is the mean particle concentration in the pipe's cross-section, C m (k )  is the local 

particle concentration measured at different locations on the surface, and n is the total 

number of cells on the surface. Eq. 5.4 gives the degree of variation in concentration as a 

standard deviation. The flow is assumed to be well mixed when mixing index tends to zero at 

the inlet. The optimization problem is then formulated as shown 

1/2 

(5.4) 
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Minimize: 

MI 

where: 0° <6<90° 
2 d  < L < \ A - d  

0.7 < F <0.9 

^1 = 0.8 
S pipe 

Where Soriflce and Spipe represent the area of the cross section of orifice and pipe, respectively 

5.4.3 Results 

Two runs were carried out in this study; each has an initial population of 32 and stopped after 

770 generations. Both runs were performed on a PC with dual Intel Xeon™ processors 

running Red Hat Enterprise Linux Workstation 3. The members of the initial population in 

both runs were selected arbitrarily from the design space by the computer. The computer 

randomly generated the crossover operator probability pc and the mutation operator 

probability pm. The technique successfully converged; the optimum parameters such as 

orifice radius and orifice angles, converged to very close values with different initial design 

candidates. The variations of the best individual's fitness during the evolution process in the 

run are shown in Figure 5.10. Table 5.2 shows that the computational time was reduced to 35 

hours from the original 658 hours by using the modified design platform. 

The contours of the particle concentration at the exit in a baseline pipe and the EA 

generated optimal result are shown in Figure 5.11 (a) and (b), respectively. The technique 

converged successfully. The optimum parameters such as orifice radius and orifice angles, 

converged to very close values with different initial design candidates. The best design 

required the orifice to have an elliptical cross-section (Figure 5.12). The orifice should be 
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installed with less than 10° degree angle (Figure 5.13). This might be connected with the 

secondary flow created by the pipe elbow; however, for the orifice location (Figures. 14), EA 

optimization results differ. This might indicate low sensitivity of the orifice location in the 

region of optimum, anywhere between 2.5 to 10 times the pipe diameter will not make a 

significant difference, as shown in the figure. 

Table 5.2 Comparison between traditional and modified design system 

Traditional 
Design 
System 

Modified 
Design 
System 

Randomly-Generated Initial Popsize 32 32 
Mating Events 650 650 

Time Required to Complete One Case by Computer (min.) 15 0.8 
Total Calls to CFD solver 2632 2632 

Total Time (hrs.) 658 35 

As demonstrated in the test case, we were able to reduce the total computational time 

for the test case by more than 90%. Hence, it is safe to say, for a simple CFD related design 

optimization problem, this design environment can help designers solve the problem within a 

much shorter time frame. 
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Figure 5.10 Fitness variations in the evolution processes 
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Figure 5.11 Coal distribution contours (a) baseline (b) best design 
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Figure 5.12 EA optimization results for orifice radius 
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Figure 5.13 EA optimization results for orifice angle 
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Figure 5.14 EA optimization results for orifice location 
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Chapter 6 VE-Suite 

Knowing whether one idea out-performs another is one of the most important features of 

doing design analysis. Reliable approximations of the altered CFD flow can provide 

qualitative results that determine whether the change of an individual component was 

effective. Enhancements in simulation and design software allow engineers' questions to be 

answered to a suitable degree and provide the necessary atmosphere for new ideas and 

creative progress to take place. Also, in order to narrow the search space to a manageable 

size, having the engineer guide the process by utilizing a set of known guidelines as well as 

intuition developed from experience can be very useful. More importantly, the approach in 

this thesis expands on a concept known well in optimization literature—the designer must 

generally see some physical results in order to understand design trade-offs. This idea is 

expanded in this thesis, allowing the designer to see physical results of the entire design in 

real-time during optimization and to use this information interactively to change aspects of 

the problem statement or redirect the search. In the next two chapters, we describe an 

interactive simulation and analysis tool that includes three components: the display device 

and graphics software, the computational software, and the communication layer that passes 

information between the two. The goal is to enable an engineer to control the design process 

and to inject his or her creativity into it. 

Before deciding which development system is best suited to a particular application, 

the developer needs to know what questions to ask. This includes knowing what capabilities 

are required to implement the application and how to tell which systems meet those 

requirements. As shown in the previous chapters, it is clear that flow fields of different pipes 
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in the coal piping system will be different mainly because these pipes have different 

geometry configurations. The coal pipe design system should be general enough so that it can 

be used for individual pipe systems without requiring users to write new routines for a new 

pipe system. This section gives an overview of the basic requirements of a general interactive 

design environment. 

6.1 Basic Requirements for an Interactive Design Environment 

To monitor progress of the optimal design process, users need appropriate hardware and 

software. The software must have proper interactive facilities for the designer to change the 

course of the design process when necessary. The design information must be displayed in a 

comprehensible manner; proper help facilities should also be available. A graphical display 

of various data and information can facilitate an interactive decision making process, so it 

should also be available. 

From our experience, we observe that there are two key issues in designing 

interactive engineering systems. First, an appropriate division of labor between humans and 

computers is needed so that the humans' superior abstract thinking and the computers' 

superior computational speed can work together to produce a synergistic effect. The extent to 

which human interaction should influence the optimization process is still unclear. 

Fortunately, end-users usually have more experience handling this issue if the system allows 

the user to guide the design process. The second issue is in order for the system to gain 

acceptance, it must be easy to use and provide real-world usability. If the environment cannot 

adapt to new applications or the learning curve is too steep, this software environment will be 

of limited use; a developer must not be required to rewrite optimization code for every new 
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application. This would make the application too time consuming to provide real-world 

usability. Based on these two key requirements, the system should have the following 

characteristics: 

1) Simplicity— the system should be easy to configure and to learn. The Application 

Programming Interfaces (APIs) and/or languages used to create applications should be 

cleanly designed and should hide as much of the system's underlying complexity as 

possible. This means users from different fields should be able to easily build 

applications inside the system or add new capabilities without dealing with system 

programming issues; 

2) Extensibility— enable the system to grow by extending existing capabilities and adding 

new technologies. If a system does not allow easy extension, it becomes difficult for 

users to write applications that will still be useful in the future. 

3) Flexibility — enable users to choose from a variety of solvers and other computer aided 

engineering tools in a platform independent manner; 

4) Physically-based, runtime visualization— enable users to observe the analysis result in a 

realistic and intuitive manner, which is necessary for the designer to interpret the massive 

amount of information that the high-fidelity solver would provide. 

6.2 Why Use VE-Suite 

Currently, there is no interactive design system available that meets these requirements. As 

mentioned before, virtual engineering allows engineers to carry out geometric modeling, 

performance analysis, numerical analysis, and decision making in a computational 

environment. It is ideally suited to integrate the above three methods within one product 
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design system. Also, virtual engineering technology can be used as a way of gaining insight 

into the design space. Furthermore, virtual engineering technology can be used to 

quantitatively and qualitatively identify innovative design options, which is exactly what the 

interactive design system requires. Hence, we have worked to extend the virtual design and 

engineering capabilities of VE-Suite to handle interactive product design. In order for the 

reader to gain a better understanding of the internal structure of the new interactive design 

toolkit, this chapter outlines the structure of VEjSuite. The next two chapters discuss the 

implementation details of the new design system built on top of it. 

VE-Suite (www.vesuite.org) is an open source virtual engineering software package 

that is currently in active development by the virtual engineering research group at Iowa 

State University. VE-Suite is designed as a high-level support tool for engineers who want to 

transform their traditional applications into virtual engineering-based applications. 

Essentially, VE-Suite enables users to easily incorporate component models and 

corresponding two-dimensional and three-dimensional graphical representations to create 

new, plug-and-play framework components. 

6.3 VE-Suite Structure 

The structure of VE-Suite is shown in Figure 6.1. The core modules (the three modules 

inside the red circle) of VE-Suite are VE-Xplorer (the graphical engine which is used to view 

comprehensive two-dimensional or three-dimensional graphic results), VE-Conductor (the 

GUI front end to the virtual engineering framework which provides easy user interaction), 

and VE-CE (the computational engine). VE-Suite is general in nature and the three key 

components can run separately on a geographically diverse set of heterogeneous computer 

http://www.vesuite.org
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platforms. This separation is convenient because the VE-CE can run on the same machine as 

the application (computational unit), and VE-Conductor, which presents a graphical user 

interface to the user, can execute remotely on a separate machine. For example, the VE-CE 

component can run on a Linux cluster; the VE-Xplorer component can ran on an SGI 

rendering machine; and VE-Conductor can run on a portable Tablet PC. Therefore, the 

framework components can be distributed across computational resources to make the most 

efficient use of these resources. This architecture is also advantageous because VE-CE must 

exist through the application's lifetime while VE-Conductor does not share this requirement. 

VE-Conductor is transitory and can connect to the server many times throughout the server's 

(application's) existence. Since the client may use visualizations for data interpretation, the 

end-user may choose to run the client on a high-performance graphics system. Also, the three 

core components of VE-Suite can function as complete stand-alone applications provided the 

necessary input files are prepared by the user. 

The communication between the different components and user-defined modules 

(three green modules in Figure 6.1) is built upon the widely adapted and stable Common 

Object Request Broker Architecture (CORBA) standard developed by the Object 

Management Group over the last decade. The Executive module (one of the key modules in 

VE-CE) implements two of the standard CORBA services bundled with The Ace ORB 

(TAO) CORBA [105] distribution. The first service is the COSS Naming Service that is used 

as a lookup table of currently running processes which allows clients to find running process 

based on a given ID. The second service is the interface that houses the functional and data 

type definitions and provides them graphically to the user to allow him or her to define a 

workflow in the graphical interface. An Interface Definition Language (IDL) between VE-
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CE and other components was designed to generate general datatypes in order to meet the 

requirements of different applications. 

In the VE-Suite framework, the running process (usually the computational unit) can 

broadcast its status and analysis information to multiple GUI clients. Any given GUI can 

connect to the system information stream at any point in time and view the current state of 

the running process. The framework is designed to allow the GUI to be shutdown and 

restarted at will without any impact on the computational unit's execution. This attach/detach 

functionality gives the user the ability to easily monitor the computational process. As an 

example, this functionality allows a user to build and start a simulation and then detach from 

WxWIndows Based 
Craphlch User 
Interface (C++) 

VE Conductor 

VE_Xplorer 

Computational Unit 
(C++) 

Virtual Environment 
(C++) 

Figure 6.1 Architecture of VE-Suite 
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the computational engine. The user could then go to a different location, re-attach to the 

running process, and regain monitoring and control functions. The other advantage of the use 

of component architecture design techniques is that multiple GUIs can also be connected 

simultaneously from different computers and allow multiple users to monitor a simulation 

from different locations. 

To enable portability on multiple operating systems and immersive technology 

platforms, VE-Xplorer is built upon VR Juggler [107], SGI OpenGL Performer [104], and 

Kitware's Visualization Toolkit (VTK) [106]. Additional details about internal structure of 

VE-Suite [67]. 

6.4 Introduction to the VE-Suite API 

When building a virtual engineering-based application, the implementation can be broken 

down into four tasks: system configuration, wxWidgets based user interfaces, the 

computational unit (see Figure 6.1) and visualization results. These tasks comprise the VE-

Suite API. 

6.4.1 System Configuration 

VE-Suite communicates with a new application through pre-defined interfaces that all 

applications must define. Users should first create a *.def file. This file should include all the 

variables that will be passed from the user interface (in VE-Suite it is called a GUI Plugin) to 

the model that the GUI is designed for. This definition file is a simple text file including two 

columns. A typical definition file is shown in Figure 6.2. In this case, the module name is 

FuelCell. It has four variables (as shown in the right column): length, cells, specie and 
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values. According to the definitions on the left column, length is a variable of type double, 

cells is an int, specie is a string, and values is a double vector. 

VE-Suite provides an executable file ModWiz; if ModWiz is running on Linux/Unix, 

and using the above definition file as an example, after running the "ModWiz example.def ' 

command, five files (example.h, example.cpp, example_UI_Dialog.h, 

example UI Dialog.cpp and a Makefile) are generated. After filling up the first four 

generated files, users can build their own GUI plugin which is specifically targeted to their 

own application. 

6.4.2 User Interface 

The GUI is where the user is able to create the system configuration, set model inputs, start 

and stop execution of the simulation, and view simulation results based on the system 

configuration they designed in the first step. Developers can create their own GUIs and then 

compile the resulting code into a Dynamic Link Library (DLL) in Windows or a shared 

library in Linux/Unix. Thus, it is more likely to meet user specific requirements because the 

MOD NAME FuelCell #This is the module name 

Double 
Int 
String 
Doublet D 

length 
cells 
specie 
values 

END 

Figure 6.2 Sample definition file "example.def' 
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interface is built by the person who will use it. This user interface will be custom-tailored to 

the user's needs and can easily be modified if the user's focus of interest changes. VE-Suite 

is able to dynamically discover, identify, and load the user's GUI from these shared libraries. 

VE-Suite provides a simple API built on top of wxWidgets for the user to build his 

own interface to fit the requirement of the actual application. WxWidgets [108] was chosen 

as the UI library because it is one of the most functional, stable cross-platform UI libraries. It 

has been actively maintained for over fourteen years and is easy to learn and use. In order to 

transfer data from the GUI to its control, the function TransferDataFromWindow in the 

generated example UI Dialog.cpp file must be overridden. A C++ plug-in base class (Figure 

6.3) defining the basic GUI interface is provided to all module developers. Since this user-

defined GUI is inherited and extended from the plug-in base class, it contains all of the 

functionality provided by the framework. As mentioned above, building GUI plugin is the 

process of filling in the blanks of the four computer-generated files. If users choose to use a 

simple GUI, they only need to build a GUI based on common wxWidgets functions and no 

base class functions need to be overriden. If users choose to customize the GUI connection 

with the computational unit, some important base functions such as UnPackResult, Result 

and others from the plug-in base class must be overridden. Figure 6.4 illustrates a simple, yet 

complete example of how to transfer data from a GUI component (wxTextCtrl) to its control. 
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Plugin Base 

•void UnPackResult (*intf : Interface) 
+wxString GetHelpO 
+wxString GetDesc() 
+wxString GetName() 
+UIDialog *Result(*parent : wxWindow) 

Figure 6.3 PluginBase class 

bool Example_UI_Dialog:: TransferDataFromWindow() 
{ 

wxString txt; 
txt = t_eff->GetValue(); 
(*p_eff)=atof( txt.c_str()); 
txt = t_pressure_out->GetValue(); 
(*p_pressure_change) = atof(txt.c_str()); 

*p_case_type = r_case_type_des->GetValue(); 
return true; 

Figure 6.4 Example of TransferDataFromWindow 

6.4.3 Computational Unit 

As mentioned before, VE-CE is used to construct, coordinate, schedule, and monitor the 

running processes. VE-CE provides a CORBA server with which the detachable GUI and 

computational unit connect. It is capable of running a simulation containing a multitude of 

different types of models, each accepting and generating a myriad of data types. Since users 

from different fields have a wide variety of needs, the analysis tools and their use require a 

detailed understanding of the problem. Therefore, it is the user's responsible to develop their 
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application objects (computation unit). VE-Suite uses the concept of the computational unit 

to allow flexibility of the system. This decreases coupling between the GUI and computation 

unit. Changes to GUI or unit will not affect the other unless the change involves a change of 

the system configuration. Once a client-server connection is made, the GUI is able to send 

parameters and commands to the unit, and the unit is able to send results, messages, updates, 

and communications back to GUI in real time. This leads to more robust and extensible code. 

Because of this, existing commercial, in-house, and open source analysis packages can be 

used almost directly with VE-Suite. The analysis packages can vary from Microsoft Excel™ 

spread sheets to process models to CFD models. The analyst only needs to provide a few 

routines to declare the communication variables. 

VE-Suite provides a template for users to fill their own computation units into the 

VE-Suite framework. Figure 6.5 shows the basic functions in the Body Unit i class; Figure 

6.6 shows two important functions that users need to modify in order to implement their own 

applications. First, SetParams needs to be implemented for the user's customized module; 

this call takes the GUI inputs passed by the CORBA interface (Executive Module). Using 

Figure 6.3 as example GUI input, every GUI variable that is needed can be retrieved from the 

interface by calling p.intfs[0].get***("paramname") (Note: *** represents the data type such 

as Double, Int, etc.). Second, StartCalc has to be implemented according to project 

requirements. This is the place developers put the existing application into VE-Suite 

framework. 

6.4.4 Graphical Plugin 
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A key aim of virtual engineering is to fully engage the human capacity for problem solving 

by creating a realistic experience for the user so that he or she can focus entirely on the 

engineering problem. The advantage is that previously indescribable complexities can be 

understood and the full range of engineering solutions can be explored. The graphical engine 

(VE-Xplorer) provides the core visualization functionality for the virtual engineering aspect 

of the framework. It can load geometry files, three-dimensional simulation data and 

experimental data of almost every format into a scene. VR Juggler is used to handle 

interfacing with VR hardware and graphics rendering platforms. VE-Suite handles the 

creation of the virtual environment and VR Juggler allows software to run with any type of 

virtual environment, from a regular 2-D screen to a six-walled immersive virtual space. Due 

to the generality of the visualization requirements, the VE-Suite core provides a complete 

visualization GUI so that users can navigate and control the scene. Thus, although most users 

of VE-Suite are not necessarily expert software developers, they need not worry about the 

complexities of details of graphics and virtual reality programming and can instead spend 

time on their applications. 

The GUI is laid out in a tabbed notebook format as shown in Figure 6.7. Typical 

operations can be performed on each tab of the GUI. For example, the navigation tab is the 

main window for users to navigate through the scene and choose the location he or she 

wishes to observe the data from. The visualization Tab is the main tab for displaying steady 

state data. Through the visualization tab, users can select different visualization methods 

(contour surface, vector fields, etc.) to visualize the fluid field. Figure 6.8 shows the 

streamline of flow through a 90 degree elbow. Figure 6.9 shows the temperature contour of a 

power plant furnace. The Data Set Tab allows engineers to select multiple data sets to view. 
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The Scalars Tab allows the engineers to select from a set of different scalar data because real 

systems usually have many scalars of interest. The Streamlines Tab is used for creating 

streamlines to show a flow field. Engineers select how many seed points they want to use and 

what orientation the streamlines will be. More details on how to use VE-Xplorer can be 

found from http://www.vesuite.org. It should be noted that VE-Suite also provides an 

interface that allows advanced users to add or modify the existing functions or visualization 

GUI. 

Body_Unit_i 

+void SetParamsO 
+void StartCalcO 
+void PauseCalc() 
+void Resume() 
+char* GetStatusMessage() 
+char* GetName() 

Figure 6.5 Body Unit i class 

http://www.vesuite.org
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Void Body_Unit_i: : SetParams (const char* param) 
{ 

if(string (param)= =" ") 
return; 
Package p; 
p.SetSysld ("gui.xml"); 
p.Load(param, strlen(param)) 
//Now make use of p.intfs to get your GUI vars out 
eff = p.intfs[0].getDouble("eff'); 
pressure_out = p.intfs[0].getDouble("pressure_out"); 
pressure_change = p.intfs[0].getDouble ("pressure_change"); 
case_type = p.intfs[0].getlnt ("case type"); 

} 

Void Body_Unit_i::StartCalc() 
{ 

bool rv; 
Package p; 
const char* result; 
//Add your implementation here 

//Fill out the output stream 
p.SetPackName ("ExportData"); 
p.SetSysld ("testxml"); 

result = p.Save(rv); 
//Marks the end of the execution 
executive_->SetModuleResult(id_, result) ; 

} 

Figure 6.6 Template for SetParams and StartCalc 
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Figure 6.7 VEXplorer GUI 

Figure 6.8 Streamline representation 
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Figure 6.9 Contour representation 
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Chapter 7 Implementation of Interactive Design Environment 

Chapter 6 shows that VE-Suite can function as a powerful foundation for interactive design 

systems. As discussed before, to allow effective user interaction, the design system should 

provide users with data and other information about the designed product and its 

performance in an understandable and intuitive way. The design system should also give 

users the ability to exert influence on the process in an intuitive manner. VE-Suite already 

provides some basic functionality, such as a detachable GUI, realistic graphical engine and 

bi-directional bindings between the GUI and the computational unit. This makes the 

implementation of the proposed interactive design platform much easier than developing it 

from scratch. Due to its generality, VE-Suite gives developers significant freedom to develop 

their own modules; however, sometimes it will force end-users to transfer their applications 

repeatedly. For example, if users need to change or add more variables into the data transfer 

stream, VE-Suite will force users to rebuild the def file and its generated files. This kind of 

repetitive work is not merely an inconvenience for the end user; it will reduce the efficiency 

which can be gained from using VE-Suite. 

As mentioned before, once the design problem is properly formulated, numerical 

methods can be used to optimize the system. The methods are iterative and generate a 

sequence of design points before converging to the optimum solution. From this point of 

view, optimization problems are highly repetitive and the concepts and methods are 

applicable for cases from different fields. Therefore, a second development on top of VE-

Suite in order to suit the requirements of the design system is needed. This indeed provides a 

major motivation for the work reported here. 
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7.1 System Structure 

Based upon the requirements that the system must be extensible and flexible, the system 

needs to evolve as it grows, support the ability to add new functionality, and make changes to 

existing services without affecting the entire system. The first question that needs to be 

answered is how to design a suitable core that could support the needs of such a dynamic 

system. Figure 7.1 shows the basic information flow of this system. By using CORBA, the 

two sides of the network connection can be written in any language and can operate on two 

different computing platforms. The primary component in the system that users interact with 

is the plug-in GUI. Using this system, designers can not only access the traditional design 

information, such as tables, two-dimensional plots and colour codes whenever they want, but 

they can also view three-dimensional virtual images (i.e. streamline) from high fidelity 

datasets such as CFD data. On the computational unit side, a multi-threaded approach is used 

in order to minimize the effort of adapting the existing EAs optimization code into this 

interactive design space. Threading is done using the high-level threading API provided in 

the VR Juggler Portable Runtime Library (VPR). The Model thread controls the traditional 

EAs search component while the View thread deals with the interactive feedback from the 

EAs. These two tasks can be viewed as separate components that execute relatively 

independently of the other. The main module code is responsible for making sure that the 

components are synchronized when needed. A centralized Database Manager module is used 

for interpreting the user's request, data management and transfer. This additional Database 

Manager module provides a simple way to track the state of the running process and 

exchange information between the Model thread and the View thread. The following sections 

will first describe how to set up the application and then focus on the implementation of the 
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computational unit. The View thread is a separate thread that executes in the same memory 

space as the main application thread. The main application thread's architecture allows the 

application to execute normally. In fact, it can execute entirely without interference from the 

view thread. The view thread has three basic tasks: interact with the main thread, gather 

monitoring output from the application, and steer the application with users' direction. 

Plugin GUI 

CORBA Interface 

DataBase 
Main Module 

Model Module 
Database 
Manager 

Figure 7.1 Diagram of the system architecture 

7.2 Implementation of General Interface for Problem Setup 

From the user's point of view, setting up the optimization of engineering problems can be 

divided into 8 steps as shown in Figure 7.2. To enable the numerical optimization search, the 

problem must be transformed into the standard VE-Suite form by choosing design variables, 

constraints and object functions. For performance analysis, if one chooses to use a CFD 
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package, it is most likely that the software package would provide user-made alternative 

discretization and solution strategies. For optimization search methods, some control 

parameters need to be set before iterations begin. Current design tools will usually fragment 

these three tasks into three separate programs. Learning and remembering three separate user 

interfaces distracts the user. Especially if users want to integrate their applications into VE-

Suite, very often they have to write their own Plugin GUI. Sometimes this preparation is 

tedious. The novice user would find this task rather difficult and may be discouraged from 

using the software altogether. Thus, the need for a user interface especially for this 

interactive design system became apparent. In this system, these are combined into a single 

easier interface. This interface is oriented towards in the direction of general and usable by 

the general engineering community. Our ultimate goal is that the same interface can be used 

with all applications whether the application is a simple modelling simulation or a CFD 

application and the GUI presented to the user is done in a consistent fashion so that he or she 

can focus on other tasks such as analysis of the problem specific requirements. 

Figure 7.3 shows the interface users can use to setup the necessary control parameters 

and other necessary initial information. As shown in this figure, the outside frame is provided 

by VE-Conductor; it provides the interface to CORBA. The inside frame is provided by this 

design tool. Figure 7.4 shows the main menu which provides many control functions. Over 

the course of the development of this GUI, it was found that certain features are required. For 

example, the ability to save the current case, reload the existing case file, basic EAs control 

parameters setup, etc. Although the current GUI is still in its initial stage, it has basic 

functionality such as selecting active design parameters, defining EA parameters, defining 

constraints, and selecting initial design candidates. Since one of the goals of this study is to 
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set up an interactive design system that allows users to provide input parameters to the 

underlying high fidelity analysis models, observe the analysis result and optimize the product 

design, the graphical user interface must be easy to use. 

Define 
geometry 

Define control 
parameters 

Choose EAs 
method 

Choose design 
variables 

Set up 
constrains 

Set up object 
functions 

Set up Analysis 
method 

Setup EAs 
optimization 
method 

Choose 
numerical 
methods 

Transform the 
problem into 
Standard form 

Choose grid 
generation 
method 

CFD-based EAs 
optimization 
process 

Figure 7.2 User-defined parameters during design set up 
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Figure 7.4 Main menu window of the design interface 

7.2.1 EAs Control Parameters Setup 

When using EAs to solve an optimization design problem, one has to define a vector of 

design parameters which can be used to define the system. In many situations, one will have 

tens or hundreds of parameters. In addition to these parameters, EAs typically have the 

population size, mutation and crossover rates and the number of generations. This poses a 

problem: what are the correct values to use for each individual application? Some research on 

this topic has been done, but it usually deals with problems too abstract to be of any use in 
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the real world. Typically, the user tries different settings, perhaps using some kind of 

visualization to steer the probing (most often a generation/fitness graph). Therefore, the 

system should give the user the ability to change these EA control parameters. In our system, 

the EA parameters are pre-defined; Table 7.1 shows the default values. Users can change 

these values through the GUI provided from the system (Figure 7.5). The user can recall or 

change any control parameter for the algorithm at any time during or after the completion of 

the algorithm. 

Table 7.1 EA parameters 

. I# .1 
PopulationSize Int 32 

T erminationMode Int 
0—after generation 
1—after time (mins) 

1 

Time Int 120 
Generations Int 1000 
TotalRuns Int 1 

MutationMode Int 
0—Gausissan 
1—Uniform 

0 

CrossoverMode Int 
0—One point 
1—Two points 

0 

O-Tournamnet 
SelectionMode Int 1-Rank 

2-Random 
0 

MutationRate Double 0.5 
CrossoverRate Double 0.5 
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Figure 7.5 EA control parameters setup dialog 

7.2.2 Design Vectors Setup 

Users can define the design parameter vector using the GUIs shown in Figure 7.6 or load 

necessary information such as design parameters' names and their constraints from an 

existing file. The file format is quite general; for example, one may set the names of four 

design parameters and possible side constraints on the vector of design variables as shown in 

Table 7.2. Internally, the system defines four other vectors to store the design information. 

The advantage of this configuration is that it gives one the freedom to change or edit this pre

defined information. It also allows the system to be easily adapted to different problems 

without rewriting the definition file for VE-Suite. In many cases, not every parameter has the 

same impact on the performance of the product. The user can choose the active parameters 

according to their experience after the potential parameters have been loaded into the system. 

For instance, as shown in Figure 7.7, only ORIFICE MAJOR RADIUS, 

ORIFICE LOCATION, and ELBOW RADIUS have been selected to be the active design 

parameters in the optimization process. 
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Figure 7.6 Design parameters setup dialog 

Table 7.2 Example of user-defined file 

mm##. ; 
ORIFICE ANGLE 0 90 

ORIFICE MAJOR RADIUS 0.7 0.9 
ORIFICE LOCATION 4.5 9.0 

ELBOW RADIUS 0.5 1.0 
ELBOW ANGLE 60 90 

Table 7.3 Other pre-defined parameters 

DesignParamNames StringlD 
Stores the names of the potential 

design parameters 
No 

ActiveParamNames StringlD 
Stores the names of the actual 

design parameters 
No 

UpperLimits Double ID 
Stores the upper limits of all 
potential design parameters 

[0,0,-,o] 

LowerLimits Double ID 
Stores the lower limits of all 
potential design parameters 

[0,0,-,0] 

ActiveDesignParams 
Values 

Double ID Stores the values of design the 
parameters 

No 
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Figure 7.7 Active design parameters setup dialog 

7.2.3 Analysis Solver Setup 

The analysis solver setup is relatively simple compared to other setups so far since in our 

project Fluent™ is used as the analysis solver. However, an interface is still provided in case 

users want to use different packages. Table 7.4 shows the internal variables that store the 

user's choices. 

Table 7.4 Parameters for analysis package 

CFDPackage String 
The name of the 
CFD package 

FLUENT 

IS_3D Int 
0 — 2d model 

1 IS_3D Int 
1 — 3d model 

1 

1 S T  u r b u l e n t F l o w  Int 
0 — laminar 
1 — turbulent 

1 

Residules Double ID Residules criteria [l Oe — 6,1 Oe — 6, • • • ,1 Oe — 6] 

7.2.4 Population Initialization 

The initial population specifies the starting points of the search. The initial population can be 

created in a number of ways. Four approaches are provided by the system: random 

generation by the computer, loading from an existing file, manual entry and any combination 

of the above three methods. As an example, in Figure 7.8, 6 out of 32 creatures in the 
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population are assigned by the user, and the other 26 are loaded from a previous run. After 

the initialization is finished, ActiveDesignParamsValue is automatically initialized according 

to this table. 

7.2.5 Fast Setup 

Another important feature of the setup process is that once users have gone through the 

above steps to setup a design problem, he or she can save the newest setup information into a 

file and reload it later. Users can also make this file themselves. Thus, the eight steps 

required for setting up the problem are not unnecessarily repeated, and the problem setup can 

be simplified into one simple step. An example of the setup file is shown in Figure 7.9. 
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0RIF1CE_MAJ0R_RADIUS ORIFICE JLOGATION ELBOW_RADIUS 

Popl J 2.5 1.2 | 

Pop 2 0.77 3.1 1 

Pop 3 0.9 13.5 0.9 

Pop 4 0.83 12.9 0.98 

PtipS 0.8 7.7 1.3 

Pop 6 0.85 4 1.4 

Pop 7 0.700197 2.49957 1.28124 

Pop 8 0.71646 7.84661 1.22734 

PDP9 0.866258 13.1808 1.16634 

POP 10 0.85341 2 <£2698 1.32108 

Pop H 0.806311 13.0431 1.01374 

Pop 12 0.877263 6.84737 1.01084 

Pop 13 0.72367 12.7269 1.43945 

POP 14 0.703966 6.54053 1.09145 I 
Pop 15 0.701246 9.49288 1.12947 j 
Pop 16 0.737307 7.96066 1.31044 

Pop 17 0.773449 12.5157 1.18485 " 

FOp 18 0.806549 10.0157 1.00153 

Pop 19 0.853844 2.63095 1.29943 

Pop 20 0.754063 2.89115 1.0139 

Pop 21 0.813837 8.14644 1.05674 

Pop 22 0.815593 13.5764 1.2643 

Pop 23 0.722374 12.2322 0.927068 

Pop 24 0.727783 10.2342 1.49755 

POp 25 0.73859 9.04136 1.48393 

Pop 26 0.857069 7.30682 0.987988 

Pop 27 0.845683 5.19577 1.21917 U 
Pop 28 0.789435 10.7413 j 1.0459 * 

1 Initial population, | Save j | Clear H OK | 

Figure 7.8 Example of initial population table 
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<TEST> 
<DesignParamlnfo> 

<ORIFICE_ANGLE lowerlimit="0" upperlimit="90" /> 
<ORIFICE_MAJOR_RADIUS lowerlimit="0.7' upperlimit="0.9"/> 
<ORIFICE_LOCATION lowerlimit="2" upperlimit="14"/> 
<ELBOW_ANGLE lowerlimit="0" upperlimit="90" /> 
<ELBOW_RADIUS lowerlimit="0.9" upperlimit="1.5" /> 

</DesignParam I nfo> 
<ActiveDesignParamlnfo> 

<ORIFICE_ANGLE ORIFICE_ANGLE="0" /> 
<ORIFICE_MAJOR_RADIUS 0RIFICE_MAJ0R_RADIUS="1" /> 
<ORIFICE_LOCATION ORIFICE LOCATION="2 " /> 
<ELBOW_ANGLE ELBOW_ANGLE="3" /> 
<ELBOW_RADIUS ELBOW_RADIUS="4" /> 

</ActiveDesignParamlnfo> 
<CreatureChainlnfo> 

<PopO>45 0.7 2.5 60 1.2</Pop0> 
<Pop1>15.9 0.77 3.1 30 1.0</Pop1> 
<Pop2>90 0.9 13.5 20 0.9</Pop2> 
<Pop3>74 0.83 12.9 50 0.98</Pop3> 
<Pop4>81.7 0.8 7.7 27 1.3</Pop4> 

</CreatureChainlnfo> 
</TEST> 

Figure 7.9 Example of setup file 

7.3 Implementation of EAs Components into VE-Suite 

Once the setup is complete, the task can be submitted to the computational unit. The 

optimization algorithm (the computational unit) proposed in Chapter 5 can be easily modified 

to add necessary interactive functionalities so that users are given the capability to influence 

the process such as altering system parameters or changing objective functions. Unlike 

typical EAs, our system lies somewhere between the two extremes of typical interactive EAs 

and traditional machine-based EAs by adding human interaction into the design process. 
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Using our framework, the user does not determine the behaviour of the computational 

process as it runs. Therefore, basically the system is still a machine-based optimization. 

To better explain the computational unit, which is our design component, we will 

now describe how to start the system up. The first step in starting the system is to connect the 

unit with the CORBA Naming Service. This is done automatically through the main function 

of DesignBaseUn.it client. The next step in starting the system is to create and initialize an 

application; first, an application object (App) must be instantiated. The first thing the object 

does is to create a regular thread that instantiates the Model object inside the 

CreateModelThread method. Once this is done, the thread executes the optimization loop and 

runs the analysis routines through the CaseCalc, CreatureFactoryBase, and 

CreatureMangerBase classes. It is worth noting all three of these classes are the same as 

discussed earlier in Chapter 5. During this process, one can also initialize his or her 

interactive checking function by creating a view thread through App's CreateViewThread 

method. Figure 7.10 shows the Unified Modelling Language (UML) diagram of this process. 

The class POABody inherits from DesignBaseUniti and provides necessary CORBA 

interfaces required for framework integration and communication. Like all VE-Suite 

applications, the two most important methods in DesignBeseUniti are SetParams and 

StartCalc. The starting point of the computational unit is from the StartCalcQ method. Inside 

StartCalc, SetParams is called in order to take input from the GUI that is passed in through 

the CORBA interface. Part of the implementation of the SetParams and StartCalc in the 

design system is as shown in Figure 7.11. 
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hit 

CreateModel 
Thread 

StartCalc 

E vol vf 

hit 

Run 

StartCalc 
CreateView 
Thread (if callcount >1) 

FindFitness 

Model View CaseCaic CreatureManagerBase CreatureFactorvBase 

Figure.7.10 A sequence diagram of the initial setup of the process 
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void DesignBaseUnit_i::SetParams ( ) 
{ // Add your implementation here 

Package p; 
p.SetSysld("gui.xml"); 
p.Load(param, strlen(param)); 
callcount++; 
popsize =p.intfs[0].getlnt("popsize"); 
designparams = p.intfs[0].getDouble1 D("designparams"); 
designparamnames = p.intfs[0].getString1 D("designparamnames"); 
upperlimit = p.intfs[0].getDouble1D("upperlimits"); 
lowerlimit = p.intfs[0].getDouble1D("lowerlimits"); 

} 

void DesignBaseUnit_i::StartCalc () 
{ //Add your implementation here 

//when it is the first time, create model thread 
if(this->callcount==1 ) 
{ 

myveapplication->CreateModelThread(); 
} 
else 
{ 

myveapplication->CreateViewThread(); 

Figure 7.11 SetParams and StartCalc implementation 

A simple App class is as an interface between the regulate optimization routine 

(Model) and the DesignBase Unit i class. A classic Subject/Observer/Mediator design 

pattern is used amongst these three classes. Figure 7.12 shows the class hierarchy. One of the 

requirements of an interactive design software tool is the capability to interrupt the iterative 

process and report the status of the design to the user. In our approach, the App class acts as a 
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mediator between the other two classes; it is the observer of Model and also the subject of 

DesignBaseUnit_i. As the subject of App, Model will notify its observer, App, when a new 

result is ready for the user to pick up. As a subject of DesignBaseUnit i, in App's Update 

function, it notifies DesignBaseUnit i class and passes information to it. This 

Subject/Observer/Mediator trio is commonly known as the Model View Controller (MVC) 

pattern. This is mainly used when test results need to be sent back to the plug-in GUI so 

users can assess the latest design information. One advantage of this approach is that the 

Model class requires little modification to extend. For example, since it may be of interest to 

the designer to visualize the path taken by the EAs optimizer, the NotifyObservers function 

can be added at the end of each mating event loop as shown in Figure 7.13. In this example, 

at the end of each mating event, Model will update its NotifyObservers function. Since Model 

is the subject of App class, its NotifyObservers function will activate App's Update function 

which in turn activates its own NotifyObservers. App's NotifyObservers function will then 

activate the update function in DesignBaseUnit i. Therefore, users can always access the 

latest information such as the fitness and new creature's geometry whenever they check the 

result from the GUI and the required modification of the original code is minimized. In the 

current design tool, the control parameters such as the current max fitness and the current 

generation's information are updated at the end of the every mating event. Only several 

additional lines to DesignBaseUnit i class are needed to check additional information. 

Another advantage is that the main module doesn't need to check the model thread all the 

time (also known as busy waiting or polling) in order to know when new information is 

ready; thus saving significant CPU time. 
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+Model() 
+~Model() 
+void EvolveQ 

Model 

+Observer() 
+~Observer() 
+void UpdateQ 

Observer 

•void StartCalcQ 
+Body_Unit_i() 
+~Body_Unit_i() 
+void UpdateQ 

Body_Unit_i 

+SubjectQ 
+~SubjectQ 
+void AddObserverQ 
+void DeleteObserverQ 
+NotifyObservers() 

Subject 

+App() 
+~AppQ 
+void CreateViewThreadQ 
+void KillViewThreadQ 
+void CreateModelThreadQ 
+void KillModelThreadQ 
+void ControlThreadsQ 
+void UpdateQ 

App 

Figure 7.12 Computational unit scheme 
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void Model::Evolve(void* unused) 
{ 

for(int mev=0; mev<totalmev; mev++) 
{ 
NotifyObserversO; 
} 

} 

void Subject::NotifyObserversO 
{ 

int iter; 
for(iter=0; iter<_observers.size();iter++) 
{ 

_observers[iter]->Update(this); 
} 

} 

void App::Update(Subject* theChangedSubject) 
{ 

if(theChangedSubject == mModel) 
NotifyObserversO; 

} 

void DesignBaseUnit_i: : Update(Subject* theChangedSubject) 
{ 

if(theChangedSubject == myapplication) 
this->UpdateLastModifiedResult(); 

} 

Figure 7.13 Connections between the DesignBaseUnit i, App and Model classes 

7.4 Implementation of Extracting Information 

There is no doubt users will have to need as much information as possible from the system so 

that they will have a better idea on how to control the system. The question is how the system 

can best provide useful information to them so that they can interactively influence or guide 

the direction of evolution of the system such as introducing or removing certain unnecessary 

design variables, extending or reducing the range of design variation, and so on. 

Graphical visualization techniques are some of the simplest and at the same time most 

powerful methods for analyzing and communication information [119]. In addition, the 

human vision system is extremely sensitive to graphical patterns, making graphical 
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representations an extremely useful analysis tool. Well designed graphical elements should 

be in very concise and compact formats at the same time able to convey large amounts of 

information. In this thesis, users can access the following three kinds of information anytime 

during an optimization lifetime. 

7.4.1 Extract Basic EAs Information 

Visualization techniques have been used to study EAs both on-line and off-line in the EAs 

community for a long time. For an interactive design system, obviously on-line system is 

required since it allows users to closely follow and evaluate the progress of an EA. However, 

most of these visualization techniques are too complex for engineers because they are mainly 

focus on assisting EAs researchers. In this system, thus far only the most basic displays have 

been used. All the information shown is sent from the computational unit through a CORBA 

connection. Therefore, users can immediately see quantitative data about the design 

performance and the search progress. For example, the Result Dialog (Figure 7.14) shows the 

latest text information from the computational unit such as the current best fitness value and 

design values in the current generation. By adding the open source software GNUPLOT 

[135] into the GUI, any design parameter or other useful information such as individual 

aspects of the population (such as best or average fitness) with respect to iteration can be 

selected for plotting. A sample of a created plot can be seen in Figure 7.15, which displays 

the history of fitness variation through the evolutionary process that is summarized in Figure 

7.14. Since VE-Conductor can access the database anytime during the optimization process, 

the user can shutdown the GUI and restart it at will without any impact on the optimization 

process. 
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Figure 7.15 Example of a result plot 

7.4.2 Extract Product Performance Information 

In general, engineers not only want to know what designs are better than the other 

candidates; they also need to understand the physical phenomena that can explain why. Much 

research has shown that by creating a realistic experience from a computational simulation 

and maintaining the visitor's focus within that experience, the maximum potential of human 
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thought and skill can be utilized. Therefore, in addition to receiving quick visual feedback 

about various configurations through traditional two-dimensional plots, the design tool also 

connects to VE-Xplorer which provides a connection to a three-dimensional virtual 

environment so that the designer can observe the analysis result of a design to catch the 

complex fluid physics and identify whether it is the result he or she wanted. Occasionally, 

those actions require extensive time since the performance data generated from the CFD 

package is vast which makes the visualization and interaction slow and cumbersome, 

especially if it needs to be carried out on a different system (say a specialized graphics 

workstation for visualization). Assuming this kind of task from the user will occur 

infrequently compared to the other tasks, in order to be able to transfer this large amount of 

data to the graphical engine without interrupting the overall network communication, the 

computation unit communicates with VE-Xplorer through VPR sockets instead of CORBA. 

VPR sockets were chosen for two reasons. First, we already use VPR's threading technology. 

Second, very often, the computational unit and graphics engine are carried on different 

operating systems. VPR sockets are cross-platform and can transfer data amongst windows, 

UNIX, and Linux systems. 

Figure 7.16 shows the connection between the computational unit and VE-Xplorer. 

Fluent™ post-processing functions are first used to export the CFD analysis result in AVS 

format. VE-Suite provides a translator which can covert an AVS file into the VTK data 

format since VE-Xplorer is built on top of VTK. Because the amount of data is usually very 

large, it is natural that the data be compressed before it is sent. The binary VTK data 

(vtkUnstructuredGrid) is compressed utilizing the compression function VTK provides and 

then sent through a VPR socket. Therefore, compressed data, the length of the compressed 
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data, and the length of the original data are ready to be sent from the computational unit to 

VE-Xplorer. When sending data across the network, the computational unit and VE-Xplorer 

can behave as client and server, respectively. When the View thread starts, it allocates a 

socket, publishes the sockets port, and listens on that port for incoming connections. Once 

VE-Xplorer connects to this socket, the cfdVeView class creates a new stream connection for 

that client-server pair. From there on out, the message protocol allows bi-directional 

messages between the client and server. The server listens on the client's socket for incoming 

messages. When a message is received, the server decodes the message and executes any 

actions requested by the client. Since there are three data components that need to be sent, the 

above actions will be repeated three times. Once VE-Xplorer gets all three of these data 

components, it will uncompress it and convert it back to a VTK dataset so VE-Xplorer can 

use it to visualize. After this step, he or she who is using this design environment can take 

full advantage of graphical benefits provided by VE-Suite. 
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Figure 7.16 Connection between computation unit and VE-Xplorer 

7.4.3 Extract Design Space Information 

Usually, an optimization procedure not only locates results about the solutions to a specific 

problem, but also provides a wealth of information about the design space. However, this 

kind of information is rarely communicated in an effective way to the designer during the 

search process. In addition to viewing the high-dimension analysis results, our system allows 

the user to interactively review the design space information from the large amount of design 

parameter vectors and their fitness values generated during the previous search. This kind of 

information can be used to help users gain knowledge about the design features of the 
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product which in turn develops the experience and intuition necessary to make the most 

effective interaction with the search process. 

Using knowledge gained from past evaluations to speed up the search process is not 

new in the literature. Currently, various approaches exist to reduce the number of fitness 

function evaluations required to reach an acceptable solution by exploiting knowledge of the 

history of evaluated points. For instance, information gathered from the initial search can be 

used to build an empirical model that approximates the fitness function to optimize. The 

approximation is then used to predict promising new solutions at a smaller evaluation cost 

than the original problem. This process is called evolutionary control [118]. The accuracy of 

this fitness model depends on how much information should be pulled up from the original 

objective functions. Therefore, the problem with this approach is that for more complex 

problems, virtually all individuals should be controlled. This leads to no benefits sometimes. 

Another example is the Cluster-oriented genetic algorithms (COGAs) proposed by Professor 

Parmee [111]. COGAs identifies high-performance (HP) regions through the on-line 

adaptive filtering according to solutions generated from previous fitness evaluations. Once 

HP regions are defined, the search space can be reduced. Again, the capability of this 

approach relies upon the size of the data set. For CFD based optimization procedure, 

generating large points in the design space will cause too much time. 

Although the above two approaches are not suited for our goal, finding high-

performance regions is undoubtedly very useful for users if they want to influence the search 

path. The problem usually is that the design space is more than three dimensions and humans 

simply cannot visualize high dimensional data. However, in two-dimensional space, humans 

can grasp rough topology information from the distribution of search points. If this n-
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dimensional space can be mapped to two-dimension space and also maintain the similarities 

amongst the data set, the user can visually select possible design vectors and send them to the 

EA as a new possible parent in the middle of the search. We expect the combination of 

humans' superior abstract thinking and computers' superior computational speed can work 

together to produce better performance than either could do alone. Advances in domain 

knowledge and in areas such as information technology offer the possibility of accelerating 

and improving human interaction in the design process. 

The Self-Organizing Map (SOM) is a neural network algorithm which is especially 

suited for the analysis and visualization of high-dimensional data. It is a data visualization 

technique invented by Professor Teuvo Kohonen [132] which reduces the dimensions of data 

to make high dimensional data sets more understandable. Since its introduction in 1984, 

many variants of SOM have been created, but the basic philosophy remains the same: unlike 

other neural networks, the SOM tries to preserve the topology of the input data; it maps 

nonlinear statistical relationships between high-dimensional input data to simple geometric 

relationships on a two-dimensional grid. The mapping roughly preserves the most important 

topological and metric relationships of the original data and, thus, inherently clusters the 

data; in other words, the SOM groups similar items together. In clustered areas the original 

reference vectors will be close to each other, and in the empty space between the clusters the 

vectors will be sparse. Thus, the cluster structure in the data set can be visualized by 

displaying the distances between reference vectors of neighboring units. Thus SOMs 

accomplish two things; they reduce dimensions and display similarities. 

Unified distance matrix (U-matrix) and component planes are the two most widely 

used visualization techniques used in SOM. U-matrix shows distances between neighboring 
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map units, and helps to see the cluster structure of the map: high values of the U-matrix 

indicate a cluster border, uniform areas of low values indicate clusters themselves. 

Component plane visualizes the values of one variable in each map unit. It shows what kind 

of values the prototype vectors of the map units have for different vector components. The U-

matrix and component planes are linked by position. Figure 7.17 shows the U-matrix and the 

four component planes of the map for the well-known Iris data set. This data set consists of 

four measurements from 150 Iris flowers: 50 Iris-sectosa, 50 Iris-versicolor and 50 Iris-

virgincia. The measurements are length and width of sepal and petal leaves. 

One can refer to the color bar for U-matrix to see which colors mean high values in 

Figure 7.17. Here the dark regions show the close connections in U-matrix plane which 

represent the clusters and the light areas comprises the cluster borders. A rough inspection on 

the U-matrix gives the idea about possible two classification regions (the top three rows and 

the bottom 7 rows) after training. By looking at the labels, one can immediately see that the 

top region corresponds to the Setosa subspecies. The two other subspecies Versicolor and 

Virginica form the other cluster. The U-matrix shows no clear separation between them, but 

from the labels it seems that they correspond to two different parts of the cluster. From the 

component planes it can be seen that the petal length and petal width are very closely related 

to each other since these two component planes are almost identical which indicates that 

petalL and petalW have linear correlation. Also some correlation exists between them and 

sepal length. The Setosa subspecies exhibits small petals and short but wide sepals. The 

separating factor between Versicolor and Virgincia is that the latter has bigger leaves [134]. 
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Figure 7.17 Visualization of SOM of Iris data [132] 

One of the drawbacks of SOM analysis is that unlike other cluster methods, the SOM 

has not distinct cluster boundaries. When data sets become more complex which often 

happens in the design space, it is not easy for human to distinguish the cluster by pure 

visualization. The choice of the best cluster can be determined by the Davies-Boulding Index 

[133]. It is a function of the ratio of the sum of within-cluster distance and between-cluster 

distance. Optimal clustering is determined by VDB, which can be calculated as : 

<71) 

Where N is the number of clusters, D is a matrix of the data set X. SN is the within-cluster 

distance between the points in a cluster and the centroids for that cluster and TN is the 
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between-cluster distance from the centroid of one cluster to the other. The optimal number of 

clusters is the one that minimizes VDB. If the clusters are well separated, then VDB should 

decrease over time as the number of clusters increases until the clustering reaches 

convergence. The left figure in Figure 7.18 shows Davies-Boulding Index for the same Iris 

data set and the right figure shows the SOM cluster by color code which is minimized with 

best clustering. As shown, the data set contains two clusters and the border is clear too. 
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Figure 7.18 Davies-Boulding Index and SOM cluster for Iris data set 

SOM ToolBox [134] is used to generate above graphs in this thesis. SOM Toolbox is 

an easy-to-use implementation of the SOM in Matlab™. It can be used to preprocess data, 

initialize and train SOMs using a range of different kinds of topologies, visualize SOMs in 
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various ways, and analyze the properties of the SOMs and data. Because SOM Toolbox is 

built on top of Matlab™, it can be added into the design environment seamlessly. 

Since the system would accumulate the data set from previous evaluations and 

generate proper graphics, the users' responsibility is to define the thresholds according to 

fitness values so that these prototype vectors can be labeled. Figure 7.19 shows the labels 

using this tool. In general, the design space can be divided into three regions: Bad, Middle, 

and Good. With a little training on how to analyze the data through U-matrix, components 

plane, by observing these graphics together, users can identify the characteristic of the design 

space easily and it will in turn help users to guide the search process. 

Figure 7.19 Example of labels in the system 

7.4 Performance 

It is known that when using EAs as optimization algorithms to search optimal design a set of 

healthy initial population can help reach the global optima much faster and easier. The most 
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common setup for initial population is the random initialization where the creatures are 

randomly assigned, preferably using a uniform distribution. The goal is to create a population 

with a good coverage of the search space, and thereby have a gene pool with good potential 

for breeding better solutions. An alternative approach is to incorporate expert knowledge into 

the initialization. In some cases, it is possible to assign the initial search space positions 

based on specific knowledge about the objective function. Domain experts usually have an 

idea of what a reasonably good solution is. In other cases, especially when CFD simulations 

are involved, designers can not decide which design is superior by simply looking at the 

parameters. However, a designer can observe the analysis result of a design and identify 

whether it is the design he/she wanted, given that the result is shown in a realistic and 

intuitive manner. Since our design system provides the tool that users can check their design 

performance easily, we evaluate how human intervention accelerates the convergences of the 

EA search by establishing a test which designers can select better initial creatures in our 

design environment. A problem with such an initialization is that the search may be too 

focused on the area around the special solution. In our test case, designers defined the first 24 

members (from 58 tries) based on their experience and intuition; the computer randomly 

generated the remaining 8 members to keep diversity amongst the population and allow the 

EA to discover fundamentally different solutions in comparison with what a human would 

have proposed. 

In order to compare the convergence performance of the interactive design tool and 

the normal EAs, the same test case used in Chapter 5 is used here. Figure 7.20 shows the 

variations of the best individual's fitness during the evolution process in the run. Two 

randomly and user-chosen seeded optimization runs tend to converge toward each other as 
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the number of generations increases, even though they follow different paths. Indeed, after 

sufficient generations this effect tends to disappear, indicating the robustness of the 

optimization technique. It also shows that with a good initial population, EAs can find the 

optimal solution much faster. In our case, the required mating events reduce from 650 to 

330. Figure 7.21 shows that several designs can be loaded into the virtual environment for 

comparison. Figure 7.22, 23, and 24 show the optimum parameters such as orifice radius and 

orifice angle, are convergence to very close values with different starting initial design 

candidates. Table 7.5 shows that the total time reduction by using the virtual engineering 

design tool can be as high as 97% 
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Figure 7.20 Fitness Variations in the evolution processes 
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Figure 7.21 Screen Shot from virtual environment 
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Figure 7.22 EA optimization results for orifice radius 
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Figure 7.23 EA optimization results for orifice angle 
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Table 7.5 Comparison between traditional design and proposed interactive design 

Initial 
pop 
size 

Mating 
events 

Total 
calls to 
CFD 

iterations 

Time 
for 

single 
CFD 

iteration 
(min) 

Total 
time 
(h) 

Time 
reduction 

Traditional 
numerical 

design 

Original two-
cycle 32 650 2632 15 658 

Virtual 
engineering 

design 

Modified two-
cycle 32 650 2632 0.8 35 95% 

Virtual 
engineering 

design 
User defined 
initial 
population 

32 330 1378 0.8 18 48% 

97% 

7.5 Conclusions 

In this chapter, we introduced the basic software implementation framework of virtual 

engineering design tool. The creation of the general GUI has made the use of the VE-Suite 

based interactive design system much easier for engineers. By having the interface, the 

tedious preparation of the necessary input files or coding for Plutln GUI has been eliminated. 

The end user does not even have to be familiar with the specific requirements of the VE-

Suite framework. 

As a VE-Suite application, the EAs model discussed in Chapter 5 can be treated as a 

regular computational unit. The focus here is how to add human interaction functionalities 

into the design environment. Thanks to the structure that VE-Suite provides, the 

implementation is not difficult. By adding a common data base and utilizing the multi
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threaded approach, the effort of adapting the existing EAs optimization code into this 

interactive design space is minimized. 

When optimizing expensive fitness functions, it is important to reduce the number of 

function evaluations required as much as possible. This can be achieved by introducing 

designers into the optimization process. In order to help users make better decisions, the 

current system allows users to access three different types of important information: 

• EAs information using traditional two-dimensional plots; 

• Physical phenomena using three-dimensional virtual reality technology; 

• Design space characteristic using SOM maps trained from past evaluated points. 

It is reasonable to believe these graphical elements generated by the system can 

provide design engineers with much relevant information which can be discussed and 

analyzed both subjectively and objectively by the designer. 

By introducing designers into the optimization process and implementing the fast 

calculation algorithm, we were able to reduce the total computational time by more than 90% 

for this test case. Hence, it is safe to say, for a simple CFD related design optimization 

problem, this virtual engineering design tool can help designers solve the problem within a 

much shorter time. For an interactive design system, a significant problem is user fatigue. For 

our fairly simple test case, 50 seconds are needed for a single CFD analysis and 18 hours to 

find the set of a better design. Therefore, the calculation time is still somewhat disappointing 

with respect to our expectation for "real-time" analysis and optimization. More efforts should 

be focus on this issue later. 
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Chapter 8 Coal Piping System Design 

This final chapter presents the shape optimization of a real coal pipe design using the 

developed tools. The baseline coal pipe problem, addressed in Section 4.3, has the objectives 

of tailoring distribution of the coal flow rate to its two branches as equal as possible and also 

tailoring a particle distribution profile upstream to a bifurcator to become as uniform as 

possible. This pipe has been chosen because it is the only pipe among the 28 coal pipes in the 

coal-fired power plant that we were able to gather data from and validate the CFD simulation 

results with. The main objective of this chapter is to demonstrate considerations on the 

practical implementation of coupled analysis and optimization using the current design 

environment. 

8.1 Problem Analysis 

Like other optimization of engineering problems, analysis of the problem specific 

requirements is always the first step in setting up the optimization process. For this case, the 

problem definition is mainly on how to choose the proper design parameters. 

The problem considered here is a pipe with nine bends, two orifices and one 

bifurcator in the system. The shape of the pipe is represented by a number of variables such 

as the degree of bends, the length of pipes, the geometrical definition for orifices, and so on. 

The set of parameters can vary according to the degrees of freedom wanted by the user. In 

the current design case, choosing the proper design parameters is based on the author's 

observation from the CFD result of the baseline model. 
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Originally, two circular-shaped orifices have been installed to balance the flow 

resistances. From our preliminary result from Section 5.4, elliptical-shaped orifice can 

increase the mixing mechanism. Therefore, in this section, elliptical instead of circular 

orifices are used again. The orifice A is placed in the main pipe upstream to the bifurcator to 

prevent the unbalance flow rates among the four pipes that extend from the same mill. The 

orifice B is placed in the left branch of the pipe after the bifurcator to balance the flow 

resistance between these two pipe branches downstream to the bifurcator. In current power 

plant design, the locations of these two orifices in the pipes are undefined. They are mainly 

installed in the pipe wherever it is convenient for installation and replacement. However, our 

preliminary results show that when the coal rope exists in the pipe, the location of orifice is 

important in order to maximize the dispersion effect of the orifice inserts into the flow field. 

Assuming the accessibility for convenience of installation and maintenance is granted 

wherever the location of the orifices, orifice A is put in the long horizontal pipe after the 

horizontal-to-vertical bend and the orifice B is put in the long vertical pipe after the 

horizontal-to-vertical bend. Both orifices can be moved along the length of the pipe. Also, 

since our goal is to balance the coal flow rate, we will keep the pressure drop consistent. 

Therefore the opening of the orifice which determines the pressure drop is constant through 

out the whole design process. Based on this, the orifice's radius can be modified as long as 

the opening of the orifice remains unchanged. As discussed in the previous chapters, the 

angular position of the rope is found to depend strongly on the pipe geometry especially the 

length of the pipe between two bends. Therefore, although it is omitted in practice, in our 

study, the orientation of the bifurcator is also taken into consideration. The assumption is 

that if the center lines of the bifurcator are aligned with the center of the rope, it might be 
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able to distribute the coal flow more uniformly. Therefore, as indicated in Figure 8.1, in this 

application, seven design variables are applied to control the objective function. Figure 8.2 

shows the sketch of the geometry of the design pipe. 
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Figure 8.1 Design variables 
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Figure 8.2 Sketch of the design pipe geometry 

8.2 Problem Setup 

In this section, the process setup using the developed tool is presented. The design tool 

provides a well-suited starting point for this work due to the various existing modules and the 
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advantage that these have a shared organization of data. Now, based on the previous 

discussion, setting up an optimization problem in the developed tool starts by the following 

preprocessing steps. 

— Define the design variables. This is mainly done in the step of problem definition. 

— Define the constrain file. Seven inequality constraints are used in the optimization to 

obtain realistic configurations. Figure 8.3 shows the complete constraint file for this model. 

In addition to the inequality constrains mentioned above, two side constraints are 

used to ensure that the openings of the two orifices are consistent with the baseline design. 

Therefore only one radius of the elliptical orifice is the independent variable. Note that the 

opening constraints may be refined in the future when a more detailed system analysis is 

performed. It is worth mentioning that users can manually input this information through the 

GUI the system provided. 

— Make GAMBIT and FLUENT journal files. Making a general GAMBIT journal file so 

that GAMBIT can automatic generate meshes for different design cases is usually a time-

consuming process. Very frequently, it will take several months to find a suitable grid for a 

special model. For this case, the most difficult geometry part is the bifurcator, which has 
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Figure 8.3 Constraints for design variables 
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been discussed in Chapter 4. Since we already have baseline model, the process of geometry 

parameterization and mesh generation is relative simple. However, because the geometry is 

very complex, it turns out two general journal files are needed in order to avoid a collapse of 

the computational mesh around the bifurcator. During the development process, the easy-to-

use capability of the design system allows the switch between different meshes and much 

more convenient to test results. On the other hand, FLUENT journal is the same for different 

design cases. 

— Define fitness evaluation functions. The design of a coal transport system for a coal-fired 

power plant needs to address two main objectives: 

First, the piping system should deliver equal mass flow rates (gas and solid) at the 

main outlets (left and right) since the presence of areas of rich combustion results in 

increased NOx emissions and a non-homogeneous temperature distribution may damage the 

turbine blades. The objective function measuring the coal flow balance can be expressed as: 

Where x is the design variable vector, Q L ,Q R ,Q denotes the coal mass flow rate associated 

with the left and right outlet, and the average outflow rate respectively. 

Second, the particle distribution at the cross-section right before the bifurcator should 

be tailored as uniformly as possible. This is an important factor contributed to extend the 

distributor's life and meet the requirement of flow splitter. The pneumatic transport of 

pulverized coal can create serious erosion problems that lead to unscheduled outages, 

downtime, and lost revenue. As a device designed for the destruction of particle ropes, it is 

extremely exposed to particle erosion. Using the bifurcator shown in Figure 8.4 as example, 

(8.1) 
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it is obvious that the bottom half of the bifurcator was suffered more serious erosion from 

incoming gas-solid flow. It is not only worn out, but also twisted especially the left side. This 

indicates that most of the particles enter the channel through this region. Although reducing 

erosion is not the focus of this thesis, it is reasonable to believe that if the particles enter the 

channel more evenly the damage to the bifurcator will be much slower. Also, most 

researchers believed that if particles evenly distribute on the cross-section right before the 

bifurcator, it is most likely the bifurcator can do its job as flow splitter more efficiently [9], 

The object function measuring the quality of the particle distribution profile is determined by 

the standard deviation of the particle concentration in the cross-section right before the 

bifurcator MI, 

particle concentration measured at different locations on the surface, and n is the total 

number of cells on the surface. 

Since the correlation between these two objectives is unclear, the weighted-sum 

approach is chosen to linearly combine these two objectives into one fitness evaluation 

function. Therefore, the optimization problem can be simplified as a single objective instead 

of a multi-objective optimization problem. 

— Add fast calculation method into the flow simulation. This is an option choice. Since 

every application will have different fitness definition, it is up to the user to design whether 

he or she will combine the fast calculation method discussed in Chapter 5 into the 

optimization search process. For this case, again all computations were performed on a PC 

1/2 

(8.2) 

Where C p  is the mean particle concentration in the pipe's cross-section, C m  (k)  is the local 
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with XEON processor running under the operating system RedHat Linux. At least six hours 

are needed to get a fully converged CFD result. However, since the two fitnesses defined in 

the last step will only need data from three cross-sections (leftout, rightout, and cross-section 

before bifurcator) we monitored the fitness changes on these three planes. Whenever the 

fitnesses based on the data from these three planes have converged, the CFD simulation for 

the current case stops and the system automatically starts a simulation for the next case. 

Hence, it takes roughly one and a half hours for the flow solver simulation to run before the 

fitness information can be used for the optimization search. 

— Choose suitable EAs parameters. This can be simply done by choosing the right EAs 

parameters from GUI. 
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Figure 8.4 A used bifurcator 

8.3 Convergence History 

Once the problem setup is completed, the optimization search can start. One run was carried 

out in this study; it has an initial population of 32 and stopped when the best fitness from 

each matching event converge. The human intervention was carried along during the search 

process whenever the author wanted to. Since a CFD case takes six hours to fully converge 

or one and half hour if the fast calculation method is used, how human intervention helps to 

accelerate the convergence of EA search is hard to evaluate. Therefore, we did not compare 

the convergence performance of this design tool with the traditional EA design method. 

Figure 8.5 to 8.7 show the SOM results from the first 32 cases. Corresponding to the 

cluster distribution, the connections between these seven design variables can be found 

through component planes. For example, for a good region, the main orifice should be put 

close to the end of the horizontal pipe, its centreline should be close to the pipe and the ration 

of its two radiuses should be large. On the other hand, for left orifice, it should be close to its 

upstream bend, and its centerline should be aligned with the pipe's and also it should be an 

elliptical shape instead of circular. The bifurcator's install angle should be close to 45 
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degrees. Bear in mind, this result was based on a small data set. With the search going, the 

database will increase gradually. Therefore, the SOM result will be more accurate. Figure 8.8 

to 8.10 show the SOM results from a data set with 120 cases. As we can see, the good region 

has different requirements for design variables. In order to compare with the traditional 

method of visualization high dimension data set with the SOM method, Figure 8.11 shows 

the correlations between the single design variable with fitness using the same 120 cases 

result. As shown in Figure 8.11, it is very hard for users to gain knowledge from it. 
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Figure 8.6 Davies-Boulding Index and SOM cluster for first 32 cases 
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Figure 8.11 Correlations between design variables with fitness 

The design optimization history can be seen from Figure 8.12, which monitored the 

development of objective function. Starting from a randomly generated initial parameter set 

with 32 individuals, with the help of the user, the fitness converged very quickly. As 

indicated in Figure 8.12, beyond the twelfth design iteration no significant changes take 

place. Therefore, we can consider that the optimizer obtains the optimum after 12 iterations 

(generations). In a matter of 12 (about five days) design iterations, the coal mass flow 

unbalance decreased from 15% ( baseline model ) to 1%. 
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Figure 8.12 Iteration history for fitness 

8.4 Comparison between Optimum and Baseline Designs 

Figure 8.13 shows a configuration summary of the design variables for the one found as 

optimum and the baseline model. It shows that the baseline geometry greatly differs from the 

found optimum geometry. Figure 8.14 shows the geometry of the optimal pipe. Since all 

seven design variables are changed it is hard to define which one is dominant parameter. The 

main changes in orifice A (from circular shape to elliptical shape, from near the center of the 

long horizontal pipe to its end right before the second bend) affect the way the rope, which is 

generated after the first vertical-to-horizontal, enters the second bend. As seen from Figure 

8.15, after the rope enters the second bend, it has a twisted shape. With the bifurcator rotated 

45 degree, this twisted rope can enter the bifurcator through its center line. This will greatly 

help the bifurcator distribute particle flow evenly. To understand the effects of the orifice B 

(in the left branch) on the coal distribution, the optimum case is compared with a similar 

design (See Figure 8.16 for its geometry summary). The only geometry difference between 

these two is the orifice B. However, its coal flow rate unbalance increased from 1% to 5%. 
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This implied that the location of the orifice has a big impact on the pressure drop. This is 

mainly because the pressure fluctuation happened in the gas-solid flow. Unlike single-phase 

flow, the pressure is dynamically changed (pattern unknown so far) instead of linear 

increased with the pipe length for gas-solid flow. Therefore, the location of orifice is a very 

important variable to determine if the flow resistance is the same for the two branches which 

will in turn affect the flow rate balance. This proves the importance of using high-fidelity 

CFD solve instead of simply model when designing a high efficient power plant piping 

system. 
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Figure 8.13 the summary of design variables, (a) optimum (b) baseline 

Figure 8.14 the geometry of the optimal pipe 
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Figure 8.15 Particle distribution in the optimum pipe 

MAIN_ORIFICE_ANGLE 90 
MAIN_ORIFICE_MAJOR RADIUS 0.9 
MAIN_ORIFICE LOCATION 43 
LEFT_OR1FiCE_ANGLE 65 
LEFT ORIFICE_MAJOR_RADIUS 0.77 
LEFT_ORIFICE_LOCATION 10 
BIFURCATOR_ANGLE 45 

MAIN_ORIFICE_ANGLE 90 
MAIN_ORIFICE MAJOR_RADIUS 0.9 
MAIN_ORIFICE LOCATION 43 
LEFT_ORIFICE_ANGLE 33 
LEFT_ORIFICE_MAJOR_RADIUS 0.8 
LEFT_ORIFICE LOCATION 2.1 
BIFURCATOR_ANGLE 45 

(a) (b) 

Figure 8.16 the summary of design variables for (a) case with same parameters for orifice A 
and bifiircator with the optimum case (b) optimum design 
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Figure 8.18 Particle distribution in the case with the best particle distribution 
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Another interesting observation is that the case with best particle distribution (with 

the best second objective function), which the geometry summary is shown in Figure 8.17), 

is not the optimum design case. Its whole particle distribution is shown in Figure 8.18. The 

comparison between particles distribution in the bifurcator section is shown in Figure 8.19. 

Since the research has shown that the bifurcator works better when the particle distribution 

can be tailored as uniform as possible. We initially expected the best particle distribution 

design will come with the best coal flow distribution. The difference between these two cases 

implies that when considering the performance of bifurcator, the test case should be selected 

such that it can reflect not only the real pipe's working condition but also its geometry 

features. 

8.5 Conclusions 

The developed interactive design tool is successfully applied to an optimization of coal pipe 

system. The baseline pipe was chosen from a real power plant. The specific components 

involved are two orifices and bifurcator. By tailoring the geometrical variables of these 

components, the coal flow imbalance can be reduced to less than 1% from original 15% 

based on the numerical simulation. The result indicates that the overall design methodology 

leads to a more efficient pipe system. Also, without adding more hardware into the pipe, this 

technology can be easily retrofitted into an existing coal pipe network. 

Convergence was achieved using a practical reasonable time (five days) and the 

interaction between the optimization algorithm and the design engineers was maintained 

throughout the process. Throughout the course of the design process, a total of 12 generations 
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were needed before the fitness converged. The result illustrates the feasibility of the proposed 

design environment for the coal pipe system design problem. 

(b) 

Figure 8.19 Contours of particle distribution in the bifurcation section, 

(a) optimum (b) best particle distribution 
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Chapter 9 Conclusions and Future Work 

9.1 Conclusions 

For a coal-fired power plant, careful control of coal distribution can reduce unburned carbon 

and minimize excess air requirements, resulting in improved overall furnace efficiency and 

less adverse impacts on downstream emissions control equipment. However, pulverized coal 

is transported by primary air in a two phase flow regime making it difficult, if not impossible, 

in the past to be distributed evenly to individual burner. The results from literature show that 

the nature of particle distribution in the pipeline can be highly inhomogeneous depending on 

the pipe geometry, phase loading, and particle properties. A particular difficult type of flow 

phenomenon is called "roping" where the coal particles are concentrated together in a small 

region of the pipe cross-section after the gas-solid mixture flows through the bend. Since the 

traditional pipe design is based on the empirical model and without the consideration of 

particle distribution at all, improving the design tool is necessary. The objective of the 

research project documented in this thesis has been to develop and integrate methods of high-

fidelity analysis and evolution optimization for complex design problems involving coal 

piping system of power plant. 

It is well-known complex flow simulations are challenging and error-prone, and it 

takes a lot of engineering expertise to obtain valid solutions. When using CFD as the analysis 

tool, the first step is to make sure that the valid model can be built. The thesis starts with 

building a complete coal pipeline with complex components such as bifurcator using 

FLUENT™ to understand the characteristic of particle distribution in a real pipe with 

multiple bends, orifices, and bifurcator. This pipe is chosen as our baseline design after its 
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results have been compared with real data collected from power plant. The baseline 

simulation result shows that the coal particle stream after the second pipe is presented as a 

spiral. Because of this fact, the bifurcator suffered severe erosion damage and the coal flow 

distribution is 15% off balance. 

Combining high-fidelity CFD models into population-based optimization tools 

presents perhaps the most comprehensive challenges in the field of optimization because the 

evaluation is very expensive. Therefore, reducing computational time is essential. In this 

thesis, we proposed a new interactive design environment to address this issue. Other than 

general benefits automated optimization approach can provide, the characteristics and 

capabilities of efficient of this tool can be summarized as the following three different 

features: 

First, the tool has been implemented in a virtual engineering framework VE-Suite. 

Therefore, users can take advantage of all the capabilities VE-Suite provides. One of most 

important benefits that VE-Suite provides is that it allows engineers to carry out geometric 

modeling, performance analysis, and decision making in a seamless manner. With an easy-

to-use GUI, the effort that users have to spend on setup the optimization process in both 

optimization algorithms and the problem to optimize is minimized. The designer can access 

the system information stream at any point in time and view the current state of the running 

process through this GUI too. This attach/detach functionality gives the user the ability to 

easily monitor the computational process. Also with minimum amount of coding, the 

designer can easily switch to other optimization algorithm. Although the test case is coal 

piping design in this thesis, we believe that the proposed design system is also highly suitable 

for other design applications. 
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Second, the system allows users to interact or guide the searching path as the design 

evolves. The goal here is to combine the computer's computational ability and human's super 

abstract thinking ability together to reduce the number of evaluated solutions in an 

optimization run. It also greatly helps the designer to understand the properties of the design 

so that they can trust and use it. In order to help users better interact with the design system, 

the tool not only provides the necessary controlling functionality that users can use to 

monitor the design process, but also a wide range of relevant information from basic EAs 

searching information to design space knowledge from previous evaluations based on SOM 

method which can be discussed and analyzed both subjectively and objectively by the 

designer. 

Third, a fast calculation approach is used to reduce the time for single CFD case by 

introducing the fitness residuals as main convergence criteria for CFD simulation. The 

amount of time that can be saved is problem dependent. For the case when the fitness 

evaluation only needs small part of the information from the flow field, the time used for 

simulation of single case can be reduced by 95% as shown in our test case. 

The developed interactive design tool is successfully applied to an optimization of 

coal pipe system. The optimum design conferred author's original idea that the proper pipe 

shape geometry can provide better coal flow distribution which is currently overlooked by 

design community. By tailoring seven geometrical variables and without adding new 

hardware, the coal flow imbalance can be reduced to less than 1% from original 15% based 

on the numerical simulation. This result illustrates that the proposed design tool can find 

excellent solutions to complex engineering problems. The fast convergence history indicates 

that the overall design methodology leads to a more efficient design system. 
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9.2 Future Work 

When considering the nature of particle distribution in the pipeline, the work on coal pipe 

design optimization becomes a very complex research area, which leaves many interesting 

possibilities for future work. First, the results in this thesis need more in-depth analysis, and 

especially testing on real pipe application. Also, there are some further researches that could 

be pursued based on the work done in this thesis: 

• While design tool presented in this thesis support it, we have not touched on the subject of 

connecting CAD package into the design system. Most current pipe design packages focus 

on pipe routing through CAD approach. It would be interesting to combine these two 

powerful design tools to speed up the pipe design. 

• The calculation speed is still somewhat disappointing with respect to our expectation for 

"real-time" analysis and optimization. Since it is widely known that EAs can be used to 

take full advantage of a parallel computer structure, one can expect that by adding 

parallelizing functions to EAs search as well as the CFD calculation, the optimization time 

will be greatly reduced. 

• Eventually, we hope this design tool can be used to facilitate multidisciplinary and 

collaborative product realization. 
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